Cardiac function in neuropeptide Y Y4 receptor-knockout mice.

Regul Pept

Prince of Wales Medical Research Institute, University of New South Wales, Barker St., Randwick, 2031 Sydney, Australia.

Published: December 2002

Autonomic control of cardiovascular function in neuropeptide Y (NPY) Y4 receptor-knockout mice was investigated using pancreatic polypeptide (PP), NPY and specific agonists and antagonists for other NPY receptors well characterised in cardiovascular function. Y4 receptor-knockout mice, anaesthetised with sodium pentobarbitone, displayed slower heart rate, indicated by a higher pulse interval and lower blood pressure compared to control mice. After vagus nerves were cut heart rate increased but was still significantly slower than in control mice. PP had no effect on blood pressure or cardiac vagal activity in either group of mice, which was consistent with earlier studies in other species. Injection of NPY evoked an increase in blood pressure but the response was significantly reduced in Y4 receptor-knockout mice compared to the controls. The reduction in pressor activity was not Y1 mediated as the selective Y1 antagonist, BIBP 3226, was effective in blocking NPY pressor activity in knockout mice. In addition, cardiac vagal inhibitory activity evoked by low doses of NPY was also reduced when compared to control responses. As N-acetyl [Leu(28, 31)] NPY 24-36 inhibited vagal activity dose dependently in both groups of mice with no difference in response at any dose, it is unlikely that this effect also is receptor mediated. We propose that the reduced vasoconstrictor and vagal inhibitory activity evoked by NPY in Y4 receptor-knockout mice is due to a lack of adrenergic tone bought about by a proposed reduction in sympathetic activity, possibly resulting from altered NPY activity secondarily affecting adrenergic transmission. We conclude that Y4 receptor deletion disrupts autonomic balance within the cardiovascular system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-0115(02)00160-xDOI Listing

Publication Analysis

Top Keywords

receptor-knockout mice
20
blood pressure
12
mice
10
npy
9
function neuropeptide
8
cardiovascular function
8
npy receptor-knockout
8
heart rate
8
compared control
8
control mice
8

Similar Publications

C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model.

Invest Ophthalmol Vis Sci

January 2025

Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Purpose: In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice.

View Article and Find Full Text PDF

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

January 2025

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

The Presence and Pathogenic Roles of M(IL-33 + IL-2) Macrophages in Allergic Airway Inflammation.

Allergy

December 2024

State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Macrophages, one of the most abundant immune cells in the lung, have drawn great attention in allergic asthma. Currently, most studies emphasize alternative activated (M2) polarization bias. However, macrophage function in allergic asthma is still controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!