Ku protein, a heterodimer of 70kDa (Ku70) and 86kDa (Ku86) polypeptides, is involved in non-homologous DNA end-joining (NHEJ) of DNA double-strand break repair and V(D)J recombination in combination with the catalytic component of DNA-dependent protein kinase (p470). Although Ku protein is known to be ubiquitously present in eukaryotic cells, it was previously reported to be absent in mature neutrophils. Using a mixture of protease inhibitors in the isolation procedure of neutrophils from human peripheral blood, we were able to detect Ku in the neutrophils by immunoblot and flow-cytometric analyses. Transcripts of Ku70 and Ku86 genes were also detected by the reverse transcriptase-polymerase chain reaction (RT-PCR), and Ku protein was shown to be localized in the nucleus of neutrophils as a heterodimer. Like poly(ADP-ribose) polymerase-1, neither mRNA nor protein of p470 was detected in the neutrophils. These results suggest that Ku is involved independently of p470 in DNA metabolism and signal transduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1357-2725(02)00123-1DOI Listing

Publication Analysis

Top Keywords

peripheral blood
8
dna-dependent protein
8
protein kinase
8
protein
7
neutrophils
5
human neutrophils
4
neutrophils isolated
4
isolated peripheral
4
blood protein
4
protein dna-dependent
4

Similar Publications

Reversal of inflammatory reprogramming by vasodilator agents in pulmonary hypertension.

ERJ Open Res

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.

Background: Pulmonary arterial hypertension (PAH) is a deadly disease without effective non-invasive diagnostic and prognostic testing. It remains unclear whether vasodilators reverse inflammatory activation, a part of PAH pathogenesis. Single-cell profiling of inflammatory cells in blood could clarify these PAH mechanisms.

View Article and Find Full Text PDF

Therapeutic doses of efzofitimod demonstrate efficacy in pulmonary sarcoidosis.

ERJ Open Res

January 2025

Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Background: In a phase 1b/2a clinical trial of efzofitimod in patients with corticosteroid-requiring pulmonary sarcoidosis, treatment resulted in dose-dependent improvement in key end-points. We undertook a analysis pooling dose arms that achieved therapeutic concentrations of efzofitimod (Therapeutic group) those that did not (Subtherapeutic group).

Methods: Peripheral blood mononuclear cells incubated with tuberculin-coated beads were exposed to varying concentrations of efzofitimod in an assay to determine concentrations that inhibited granuloma formation.

View Article and Find Full Text PDF

Introduction: Severe cutaneous adverse reactions (SCARs) are life-threatening and often linked to antiepileptic drugs (AEDs). Common types of SCARs include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). Immune-mediated mechanisms involving human leukocyte antigen () alleles have been implicated in the pathogenesis of this reaction.

View Article and Find Full Text PDF

Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!