Adsorption of cadmium ion and gallium ion to immobilized metallothionein fusion protein.

Biotechnol Prog

Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Sakai, Osaka 599-8531, Japan.

Published: July 2003

A fusion protein made from maltose binding protein (pmal) and human metallothionein (MT) was expressed using E. coli. The purified recombinant protein (pmal-MT) was immobilized on Chitopearl resin, and characteristics of pmal-MT for metal binding were evaluated. As expected from the tertiary structure of metallothionein, the pmal-MT ligand adsorbed 12.1 cadmium molecules per one molecule of the ligand at pH 5.2. The pmal-MT ligand also bound 26.6 gallium molecules per one molecule of the ligand at pH 6.5. Neither cadmium ion nor gallium ion bound to a control protein bovine serum albumin (BSA). Adsorption isotherms for both ions were correlated by Langmuir-type equations. Two types of binding sites have been elucidated on the basis of HSAB (hard and soft acid and base) theory. It was suggested that gallium ion specifically binds to amino acid residues containing oxygen and nitrogen atoms, while cadmium ion binds to specific binding sites formed by multiple cysteine residues. The pmal-MT ligand bound these metals in the concentration range of 0.2-1.0 mM, and the bound metal ions could be eluted under relatively mild conditions (pH 2.0). The pmal-MT Chitopearl resin was stable and could be used repeatedly without loss of binding activity. Thus, this new ligand would be useful for recovery of toxic heavy metals and/or valuable metal ions from various aqueous solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp0200550DOI Listing

Publication Analysis

Top Keywords

cadmium ion
12
gallium ion
12
pmal-mt ligand
12
ion gallium
8
fusion protein
8
chitopearl resin
8
molecules molecule
8
molecule ligand
8
ligand bound
8
binding sites
8

Similar Publications

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!