Rearrangement of a 1,3-trans-[Pt(NH3)2[(GXG)-N7G,N7G]] intrastrand cross-link into interstrand cross-links within RNA duplexes.

Nucleic Acids Res

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris cedex 06, France.

Published: December 2002

AI Article Synopsis

  • The study extends previous research on cross-linking reactions to RNA duplexes, specifically focusing on a platinated 17mer RNA strand that forms interstrand cross-links when paired with its complementary strand.
  • The reaction rate at 200 mM NaClO4 is comparable to that observed in DNA-RNA duplexes and is influenced by the concentration of Na+ or Mg2+ ions.
  • The presence of specific tandem mismatches in the RNA structure affects the rate of cross-linking; notable findings indicate that while some mismatches do not alter the rate, others can significantly slow it down, highlighting the importance of local structural configurations in the reaction.

Article Abstract

The cross-linking reaction described previously in the DNA and 2'-O-methyl RNA series is extended to RNA duplexes. A 17mer single-stranded RNA containing the 1,3-trans-[Pt(NH3)2[(GAG)-N7G,N7G]] intrastrand chelate, named G*AG* (* indicating a platinated base) gives, upon pairing with the complementary RNA strand, the G*AG/CUC* interstrand cross-link. The rate of the reaction in 200 mM NaClO4 is similar to that observed for DNA-RNA duplexes. It depends on the added Na+ or Mg2+ cation and on its concentration. RNA duplexes containing GA/GA or AG/AG tandem mismatches in the rearrangement triplet core were also studied. The major interstrand cross-links, G*AG/CGA* and G*AG/AGC*, are accompanied by a minor one involving the central G of the CGA or AGC complementary sequence G*AG/CG*A and G*AG/AG*C. In 200 mM NaClO4, the G*A/GA tandem mismatch does not modify the rate of the cross-linking rearrangement whereas the AG*/AG mismatch slows it down by a factor of four. Our results reflect the predominance of the local structure of the rearrangement core over the nucleophility of the cross-linking base. They also show that the reaction could be used to trap tertiary structures of naturally occurring RNAs, including those with the commonly encountered GA/GA mismatch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137981PMC
http://dx.doi.org/10.1093/nar/gkf672DOI Listing

Publication Analysis

Top Keywords

rna duplexes
12
interstrand cross-links
8
200 naclo4
8
rna
6
rearrangement
4
rearrangement 13-trans-[ptnh32[gxg-n7gn7g]]
4
13-trans-[ptnh32[gxg-n7gn7g]] intrastrand
4
intrastrand cross-link
4
cross-link interstrand
4
cross-links rna
4

Similar Publications

Structural analysis of human ADAR2-RNA complexes by X-ray crystallography.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, CA, United States; Department of Molecular and Cellular Biology, University of California, Davis, CA, United States. Electronic address:

Adenosine deaminases acting on RNAs (ADARs) are a class of RNA editing enzymes found in metazoa that catalyze the hydrolytic deamination of adenosine to inosine in duplexed RNA. Inosine is a nucleotide that can base pair with cytidine, therefore, inosine is interpreted by cellular processes as guanosine. ADARs are functionally important in RNA recoding events, RNA structure modulation, innate immunity, and can be harnessed for therapeutically-driven base editing to treat genetic disorders.

View Article and Find Full Text PDF

En masse evaluation of RNA guides (EMERGe) for ADARs.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:

Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.

View Article and Find Full Text PDF

Synthetic nucleic acids, also defined as xenobiotic nucleic acids (XNAs), opened an avenue to address the limitations of nucleic acid therapeutics and the development of alternative carriers for genetic information in biotechnological applications. Two related XNA systems of high interest are the α-l-threose nucleic acid (TNA) and (3'-2') phosphonomethyl threosyl nucleic acid (tPhoNA), where TNAs show potential in antisense applications, whereas tPhoNAs are investigated for their predisposition toward orthogonal genetic systems. We present predictions on helical models of TNA and tPhoNA chemistry in homoduplexes and in complex with native ribose chemistries.

View Article and Find Full Text PDF

Oxford Nanopore Technologies provides multiplexing options for DNA and cDNA sequencing, but not for direct RNA sequencing. Here we describe a duplexing approach and validate it by simultaneously sequencing the rRNA from wild type and knockout that have differential rRNA modifications, successfully demultiplexing the data using bioinformatics approaches.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!