Zucchini squash (Cucurbita pepo) is a systemic host for most strains of the cucumovirus Cucumber mosaic virus (CMV), although the long-distance movement of the M strain of CMV (M-CMV) is inhibited in some cultivars. However, co-infection of zucchini plants with M-CMV and the potyvirus Zucchini yellow mosaic virus strain A (ZYMV-A) allowed M-CMV to move systemically, as demonstrated by tissue-print analysis. These doubly infected plants exhibited severe synergism in pathology. Infection of zucchini squash by M-CMV and an attenuated strain of ZYMV (ZYMV-AG) showed a milder synergy in pathology, in which ZYMV-AG also facilitated the long-distance movement of M-CMV similar to that promoted by ZYMV-A. Variation in the extent of synergy in pathology by the two strains of ZYMV did not correlate with differences in levels of accumulation of either virus. Thus, the extent of synergy in pathology is at least in part independent of the resistance-neutralizing function of the potyvirus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/0022-1317-83-12-3173 | DOI Listing |
J Agric Food Chem
January 2025
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Plant Sciences, Jilin University, Changchun 130062, China.
Tobacco mosaic virus (TMV) is a major threat to crops, making the discovery of green biopesticides essential. Herein, we present two active ingredients derived from the medicinal plant , findlayine A () and dendrofindline B (), as promising precursor compounds for TMV inhibitors. Among them, inhibited TMV infestation on tobacco leaves at a rate of 38.
View Article and Find Full Text PDFVirology
January 2025
College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China. Electronic address:
Plant viruses represent a major threat to agriculture, affecting a wide range of crops with substantial economic losses. This study presented a novel strategy for managing plant viral diseases through the development an attenuated vaccine utilizing cucumber mosaic virus (CMV) for virus-induced gene silencing (VIGS) targeting susceptibility gene. TOBAMOVIRUS MULTIPLICATION 2A (TOM2A) gene was identified as a critical factor that enhances susceptibility to TMV infection in plants.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
The Institute of Plant Sciences and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).
View Article and Find Full Text PDFPlant Genome
March 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
Winter barley (Hordeum vulgare) production areas in the middle and lower reaches of the Yangtze River are severely threatened by barley yellow mosaic disease, which is caused by Barley yellow mosaic virus and Barley mild mosaic virus. Improving barley disease resistance in breeding programs requires knowledge of genetic loci in germplasm resources. In this study, bulked segregant analysis (BSA) identified a novel major quantitative trait loci (QTL) QRym.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!