Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities. To examine this, we recorded muscle fiber endplate currents (EPCs) and found reduced amplitudes and increased failures during nerve stimulation in homozygotes compared with wild-type controls. Comparison of EPC amplitudes with muscle fiber current thresholds indicate that many EPCs from homozygotes fall below threshold for activating muscle fibers but can be raised above threshold following potentiation. To determine whether axonal abnormalities might play a role in causing motor unit dysfunction, we examined the postnatal maturation of axonal conduction velocity in relation to the appearance of tetanic failure. We also examined intracellularly labeled motor neurons for evidence of axonal neurofilament accumulations, which are found in many instances of motor neuron disease including HCSMA. Despite the appearance of tetanic failure between 90 and 120 days, average motor axon conduction velocity increased with age in homozygotes and achieved adult levels. Normal correlations between motor neuron properties (including conduction velocity) and motor unit properties were also observed. Labeled proximal motor axons of several motor neurons that supplied failing motor units exhibited little or no evidence of axonal swellings. We conclude that decreased release of transmitter from motor terminals underlies motor unit dysfunction in HCSMA and that the mechanisms determining the maturation of axonal conduction velocity and the pattern of correlation between motor neuron and motor unit properties do not contribute to the appearance or evolution of motor unit dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00270.2002DOI Listing

Publication Analysis

Top Keywords

motor unit
24
motor
18
unit dysfunction
16
motor neuron
16
conduction velocity
16
motor neurons
12
endplate currents
8
neuron disease
8
motor units
8
muscle fiber
8

Similar Publications

Virtual reality for multiple sclerosis rehabilitation.

Cochrane Database Syst Rev

January 2025

Faculty of Physical Education and Physiotherapy, Rehabilitation Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Background: Multiple sclerosis (MS) is the most common neurological disease in young adults. Virtual reality (VR) offers a promising rehabilitation tool by providing controllable, personalised environments for safe, adaptable and engaging training. Virtual reality can be tailored to patients' motor and cognitive skills, enhancing motivation through exciting scenarios and feedback.

View Article and Find Full Text PDF

Background: Postneonatal cerebral palsy (PNCP) is rare and requires large databases to be studied over time.

Objectives: To study the time trend of prevalence of PNCP overall and by cause, and to describe the clinical characteristics of children with PNCP according to cause and compared with children with pre/peri/neonatal CP (PPNCP).

Methods: The Surveillance of Cerebral Palsy in Europe (SCPE) database was used.

View Article and Find Full Text PDF

Physical activity (PA) is beneficial for several health outcomes. Adults born with very low birth weight (VLBW<1500g) undertake less PA than those born at term, have poorer motor abilities and may serve as a model on early life origins of PA. We therefore examined whether motor abilities mediate the association between being born with VLBW and device-measured PA.

View Article and Find Full Text PDF

Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.

View Article and Find Full Text PDF

Engaging dystonia networks with subthalamic stimulation.

Proc Natl Acad Sci U S A

January 2025

Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.

Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!