Progesterone production by the corpus luteum is a process vital for reproduction. In humans its secretion is stimulated by the placental hormone human chorionic gonadotropin (hCG), and this stimulatory action can also be observed in cultured human luteinized granulosa cells (GCs). We now provide evidence that opening of a Ca(2+)-activated K(+) channel, the BK(Ca), is crucially involved in this process. Immunohistochemistry and RT-PCR revealed the presence of the pore-forming alpha-subunit in human luteinized GCs and in luteal cells of human, macaque, and rat, implying that BK(Ca) channels are important throughout species. Blocking of BK(Ca) channels by iberiotoxin attenuated hCG-induced progesterone secretion. The inhibitory action of iberiotoxin suggests that BK(Ca) channels are activated in the course of hCG-induced steroidogenesis. In search of physiological activators we used an electrophysiological approach and could preclude a direct regulation of channel activity by hCG or GC-derived steroids (progesterone and 17beta-estradiol). Instead, the peptide hormone oxytocin and an acetylcholine (ACh) agonist, carbachol, evoked transient BK(Ca) currents and membrane hyperpolarization. These two molecules are both secreted by GCs and act via raised intracellular Ca(2+) levels. The release of oxytocin is stimulated by hCG, and a similar mechanism is likely in the case of ACh. We conclude that BK(Ca) channel activity in GCs is mediated by components of the intraovarian signaling system, thereby interlinking a systemic hormonal and a local neuroendocrine system in control of steroidogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2002-020841 | DOI Listing |
Alzheimers Dement
December 2024
Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA.
Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.
View Article and Find Full Text PDFBrain Res
December 2024
Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
Background: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.
View Article and Find Full Text PDFPeptides
December 2024
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Neuropharmacology
December 2024
Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical Medical College (900th Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, PR China.
The affective dimension in postsurgical pain is still poorly understood. Since neuropeptide oxytocin (OXT) has been implicated in a broad spectrum of pain and negative emotion, we investigated the potential therapeutic effect of intranasal OXT on postsurgical pain and associated anxiety in a mice model of plantar incision. The role of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels was explored by using behavioral pharmacology experiments.
View Article and Find Full Text PDFCureus
November 2024
Research and Development, Enalare Therapeutics, Princeton, USA.
Xylazine exacerbates the respiratory depression induced by fentanyl. Because xylazine is a non-opioid, it is resistant to reversal by opioid receptor antagonists such as naloxone (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!