1. The presynaptic interactions between facilitatory beta-adrenoreceptors and inhibitory 5-hydroxytryptamine (5-HT) receptors modulating glutamate release from cerebrocortical nerve terminals were examined. 2. 4-aminopyridine (4-AP, 1 mM)-evoked glutamate release was facilitated by the membrane permeant cyclic-3',5'-adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), used to directly activate cAMP-dependent protein kinase (PKA). 3. The beta-adrenoreceptor agonist, isoprenaline (ISO), effected a concentration-dependent potentiation of 4-AP-evoked glutamate release which was abolished by the beta-adrenoreceptor antagonist, propranolol, and the PKA inhibitor, Rp-cyclic-3',5'-adenosine-monophosphothioate (Rp-cAMPS). 4. 5-HT receptor activation by 100 microM 5-HT produced an inhibition of 4-AP-evoked glutamate release in nerve terminals. The inhibitory effect of 5-HT could be mimicked by the selective 5-HT(1A) receptor agonist, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) and antagonized by 1-(2-methoxyphenyl)-4-(4-phthalimidobutyl)piperazine (NAN-190). 5. When 5-HT (or 8-OH-DPAT) was used in conjunction with ISO or 8-Br-cAMP, the beta-adrenoreceptor- and PKA-mediated potentiation of glutamate release was abrogated. 6. The inhibitory crosstalk of 5-HT(1A) receptors to beta-adrenoceptor-mediated facilitation of glutamate release was abolished in the presence of NAN-190. 7. Examination of voltage-dependent Ca(2+) influx revealed that, while ISO and 5-HT alone caused a respective potentiation and diminution of the 4-AP-evoked increase in [Ca(2+)](c), the co-presence of 5-HT abolished the ISO mediated potentiation of Ca(2+) influx. 8. Together, these results suggest that beta-adrenoreceptors and 5-HT(1A) receptors coexist on the cerebrocortical nerve terminals and that the cross-talk between the two receptor signalling pathways occurs at a locus downstream from cAMP production, possibly at the level of voltage-dependent Ca(2+) influx.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573621 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705045 | DOI Listing |
Mol Psychiatry
January 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.
View Article and Find Full Text PDFCell Res
January 2025
Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.
View Article and Find Full Text PDFArch Toxicol
January 2025
Applied Biology Department, Miguel Hernández de Elche University, Elche, Spain.
Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
Hypothalamic kisspeptin (Kiss1) neurons are vital for maintaining fertility in the mammal. In the female rodent, Kiss1 neurons populate the anteroventral periventricular/periventricular nuclei (Kiss1AVPV/PeN) and the arcuate nucleus (Kiss1ARH). Kiss1ARH neurons (a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!