1. The present study was undertaken to elucidate whether PKCalpha plays a role in the mechanism of the stretch-induced contraction potentiated by 20-hydroxyeicosatetraenoic acid (20-HETE). The effects of 20-HETE on the canine basilar artery were compared with those of iberiotoxin, a blocker of large conductance Ca(2+)-activated K(+) channels (K(Ca) channels), as this blocker was shown earlier to sensitize these arteries to mechanical stretch. 2. Slow stretch at rates of 0.1 to 3 mm s(-1) did not produce any contraction in normal physiological solution. 3. In the presence of 20-HETE, the slow stretch could produce contraction, which was inhibited by nicardipine, a 1,4-dihydropyridine Ca(2+) channel blocker, and gadolinium, a blocker of stretch-activated cation channels. 4. 20-HETE inhibited whole-cell K(+) current and depolarized the membrane by approximately 10 mV. These effects of 20-HETE were similar to those of iberiotoxin. 5. Calphostin C, an inhibitor of protein kinase C (PKC), inhibited the action of 20-HETE, but not that of iberiotoxin. 6. In response to 20-HETE PKCalpha isoform was translocated from the cytosol to the membrane fraction, which translocation was inhibited by calphostin C. 7. These results suggest that 20-HETE induced sensitization of the canine basilar artery to stretch was caused by PKCalpha-mediated inhibition of K(Ca) channel activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573599PMC
http://dx.doi.org/10.1038/sj.bjp.0704960DOI Listing

Publication Analysis

Top Keywords

canine basilar
12
basilar artery
12
20-hydroxyeicosatetraenoic acid
8
stretch-induced contraction
8
inhibition kca
8
kca channel
8
20-hete
8
effects 20-hete
8
slow stretch
8
produce contraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!