We have used indirect immunofluorescense studies and glycosylation-site insertion and deletion mapping to characterize the topology of human copper transporter 1 (hCTR1), the putative human high-affinity copper-import protein. Both approaches indicated that hCTR1 contains three transmembrane domains and that the N-terminus of hCTR1, which contains several putative copper-binding sites, is localized extracellularly, whereas the C-terminus is exposed to the cytosol. Based on previous observations that CTR1 proteins form high-molecular-mass complexes, we investigated directly whether CTR1 proteins interact with themselves. Yeast two-hybrid studies showed that interaction of yeast, mouse, rat and human CTR1 occurs at the sites of their N-terminal domains, and is not dependent on the copper concentration in the growth media. Analysis of deletion constructs indicated that multiple regions in the N-terminus are essential for this self-interaction. In contrast, the N-terminal tail of the presumed low-affinity copper transporter, hCTR2, does not interact with itself. Taken together, these results suggest that CTR1 spans the membrane at least six times, permitting formation of a channel, which is consistent with its proposed role as a copper transporter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223224PMC
http://dx.doi.org/10.1042/BJ20021128DOI Listing

Publication Analysis

Top Keywords

copper transporter
16
human copper
8
transporter hctr1
8
localized extracellularly
8
hctr1 putative
8
ctr1 proteins
8
copper
5
n-terminus human
4
transporter
4
hctr1
4

Similar Publications

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Biomimetic Pseudopeptides to Decipher the Interplay Between Cu and Methionine-Rich Domains in Proteins.

Chemistry

December 2024

CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble, IRIG/SYMMES, FRANCE.

Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive.

View Article and Find Full Text PDF

Copper is an essential element involved in various biochemical processes, such as mitochondrial energy production and antioxidant defense, but improper regulation can lead to cellular toxicity and disease. Copper Transporter 1 (CTR1) plays a key role in copper uptake and maintaining cellular copper homeostasis. Although CTR1 endocytosis was previously thought to reduce copper uptake when levels are high, it was unclear how rapid regulation is achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!