Models of the cellular force development simulate the contractive behavior of the sarcomere. In conjunction with electrophysiological models they can contribute to a better comprehension of physiology and pathologies. Aim of this study is to examine the coupling of cellular electrophysiological processes and force development. For that a graphical user interface was developed to simplify the parameterization and calculation of the models as well as to present the results graphically. A feedback mechanism is introduced to pay attention to close connections between force development and intracellular processes. On basis of various tests with different boundary conditions, new force models are developed, parameterized, validated and compared with models in literature. In future studies the results will be tested in multiple cell organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/bmte.2002.47.s1b.774 | DOI Listing |
ACS Nano
January 2025
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.
Biotechnology is the key driving force behind the sustainable development of aquaculture, as biological innovation would significantly improve the capabilities of aquatic breeding and achieve independent and controllable seeding sources to ensure food safety. In this article, we have analyzed the current status and existing problems of marine aquaculture in China. Based on these data, we have summarized the recent (especially the last 10 years) biotechnological innovation and breeding progress of marine aquaculture in China, including whole genome sequencing, sex-related marker screening, genomic selection, and genome editing, as well as progress of improved marine fish varieties in China.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Syngenta Ltd, Jealott's Hill International Research Centre, Warfield, Bracknell, RG42 6EY, UK.
Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).
View Article and Find Full Text PDFActa Odontol Scand
January 2025
Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
Background: Oral health is fundamental to children's health and well-being. Parental knowledge, awareness, and practices towards oral habits significantly influence children's oral health. Early diagnosis and intervention to break abnormal oral habits are vital to prevent long-term detrimental effects on oral and facial development.
View Article and Find Full Text PDFCurr Opin Pediatr
January 2025
Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia.
Purpose Of Review: Life on earth, as we know it, is changing. The likelihood of more frequent pandemics and disease outbreaks is something that current global healthcare infrastructure is ill equipped to navigate. Human activity is forcing our planet into a new geologic epoch, the Anthropocene, which is typified by increased uncertainty resulting from human disruption of earth's life-giving ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!