Background: Specific immunotherapy involving systemic injection of allergen, though highly effective, can cause severe side effects due to IgE-mediated activation of effector cells. Allergen-derived peptides might provide a safer alternative. We have investigated the use of mucosally delivered peptide to induce CD4(+) T(H)2 cell tolerance and thus protect against allergen-induced airway inflammation.
Objective: The purpose of this study was to investigate whether intranasal administration of an allergen-derived peptide, either alone or adsorbed to chitosan, can prevent the induction of T(H)2-mediated pulmonary inflammation after sensitization and challenge of the airways with allergen.
Methods: Mice were given (intranasally) a peptide containing an immunodominant epitope of the Dermatophagoides pteronyssinus (Der p) 1 allergen, either as soluble antigen or adsorbed to chitosan, before sensitization and allergen challenge. Pulmonary inflammation, antigen-specific CD4(+) T-cell responses, and antibody levels in sera were then determined.
Results: Mice given peptide adsorbed to chitosan had significant reductions in airway eosinophilia, which correlated with reduced levels of IL-4 and IL-5 in the bronchoalveolar lavage fluid. There was decreased recruitment of activated CD4(+) T cells into the airways after allergen challenge, which correlated with a loss of Der p 1-specific T-cell cytokine responses in the periphery and the localized production of IL-10 by antigen-specific T cells in bronchial lymph nodes. Induction of peripheral T-cell tolerance was preceded by transient T-cell activation and IFN-gamma production.
Conclusion: Our data demonstrate that suppression of airway inflammation by intranasal administration of peptide antigen adsorbed to chitosan is initiated by transient T-cell activation and maintained by the production of IL-10 by antigen-specific T cells in the draining lymph nodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1067/mai.2002.129800 | DOI Listing |
Int J Biol Macromol
January 2025
Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco. Electronic address:
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.
View Article and Find Full Text PDFSci Total Environ
January 2025
Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China.
Selective recovery of rare earth elements (REEs) from environmental waste is strategically significant. Herein, Ce(III) imprinted EDTA modified chitosan-magnetic graphene oxide (IIP-EDTA-CS-MGO) was prepared for selective recovery of Ce(III). Furthermore, adsorption mechanism was clarified based on versatile adsorption fittings and spectroscopic tests.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:
The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt. Electronic address:
The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!