Thiopurine S-methyltransferase (TPMT) plays an important role in the metabolism of thiopurine drugs. In humans, a common genetic polymorphism for TPMT is a major factor responsible for individual variation in the toxicity and therapeutic efficacy of these drugs. Dogs (Canis familiaris) are also treated with thiopurine drugs and, similar to humans, they display large individual variations in thiopurine toxicity and efficacy. We set out to determine whether dogs might also display genetically determined variation in TPMT activity. As a first step, we observed that canine red blood cell (RBC) TPMT activity in samples from 145 dogs varied over a nine-fold range. That variation was not associated with either the age or sex of the animal. Subsequently, we cloned the canine TPMT cDNA and gene. The canine cDNA encoded a protein that was 81.2% identical to the enzyme encoded by the most common TPMT allele in humans. A genotype-phenotype correlation analysis was performed by resequencing the canine gene using DNA samples from 39 animals selected for high, low or intermediate levels of RBC TPMT activity. We observed nine polymorphisms in these 39 DNA samples, including three insertion/deletion events and six single nucleotide polymorphisms (SNPs), one of which was a nonsynonymous cSNP (Arg97Gln). However, when the variant allozyme at codon 97 was expressed in COS-1 cells, it did not display significant differences in either basal levels of TPMT activity or in substrate kinetics compared with the wild-type allozyme. Six of the nine canine TPMT polymorphisms were associated with 67% of the variation in level of RBC TPMT activity in these 39 blood samples. When those six SNPs were assayed using DNA from all 145 animals studied, 40% of the phenotypic variance in the entire population sample could be explained by these polymorphisms. Therefore, inheritance is a major factor involved in the regulation of variation in RBC TPMT in the dog, just as it is in humans. These observations represent a step towards the application of pharmacogenetic and pharmacogenomic principles to companion animal drug therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00008571-200212000-00005 | DOI Listing |
Metabolites
December 2024
Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
December 2024
Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
Background: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary chronic inflammatory disease characteristic of gastrointestinal polyps and ectodermal abnormalities. Corticosteroid therapy is the mainstay medication for CCS. Few studies indicated immunosuppressants might be the choices for patients with steroid refractory, steroid dependent or intolerant.
View Article and Find Full Text PDFPharmacotherapy
November 2024
The University of Sydney School of Pharmacy, Camperdown, New South Wales, Australia.
Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.
Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.
Naunyn Schmiedebergs Arch Pharmacol
November 2024
Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri, Pune, Maharashtra, India.
Pharmacogenomics
November 2024
University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, 1000, Slovenia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!