In vivo antitumor activity of Sindbis viral vectors.

J Natl Cancer Inst

NYU Cancer Institute, Rita J. and Stanley H. Kaplan Comprehensive Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.

Published: December 2002

AI Article Synopsis

  • Sindbis virus can be utilized as a vector to deliver genes specifically to cancer cells due to its ability to bind to high-affinity laminin receptors, which are more abundant in some human cancers.
  • In experimental studies, mice with cancer xenografts showed significant tumor size reduction and increased apoptosis when treated with the Sindbis viral vector SinRep/LacZ, which carries the beta-galactosidase gene.
  • The study suggests that Sindbis viral vectors could be a promising strategy for targeting and potentially treating various types of cancer, highlighting the importance of natural killer (NK) cells in the effectiveness of this treatment.

Article Abstract

Background: Sindbis virus, a blood-borne virus transmitted by mosquitoes, has been used as a vector to efficiently express exogenous genes in vitro and in vivo and to induce apoptosis. Because Sindbis virus infects mammalian cells by interacting with the high-affinity laminin receptors, which are expressed at higher levels in several human cancers than in normal cells, we determined whether a Sindbis viral vector could be used to target cancers in vivo.

Methods: C.B-17-SCID mice with established xenografts were given daily intraperitoneal injections of the Sindbis viral vector SinRep/LacZ containing the bacterial beta-galactosidase gene. Control mice were untreated or received injections with phosphate-buffered saline. Tumor size was measured daily. Expression of beta-galactosidase and Factor VIII (a marker for endothelial cells) was determined by immunohistochemical staining of tumor sections. Apoptosis was analyzed by TUNEL (terminal deoxynucleotidyl transferase [TdT]-mediated dUTP nick end labeling) staining. C.B-17-SCID beige mice, which lack natural killer (NK) cells, were used to assess the importance of NK cells in antitumor efficacy of Sindbis viral vectors.

Results: Tumors from mice treated with SinRep/LacZ were statistically significantly smaller than tumors from control mice. This effect was observed for tumor xenografts derived from BHK (kidney, hamster), LS174T (colon, human), HT29 (colon, human), and CFPAC (pancreas, human) cells. Expression of beta-galactosidase co-localized with that of Factor VIII in tumor sections. Tumors from SinRep/LacZ-treated mice contained more apoptotic cells than tumors from control mice. Complete tumor regression was observed in three of five C.B-17-SCID mice but in none of five C.B-17-SCID beige mice treated with SinRep/LacZ.

Conclusion: Sindbis viral vectors efficiently targeted tumors in vivo, were apparently delivered through the circulation, and were more effective in the presence of NK cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/94.23.1790DOI Listing

Publication Analysis

Top Keywords

sindbis viral
20
control mice
12
mice
9
viral vectors
8
sindbis virus
8
cells
8
cells determined
8
viral vector
8
cb-17-scid mice
8
expression beta-galactosidase
8

Similar Publications

Establishment of a New Real-Time Molecular Assay for the Detection of Babanki Virus in Africa.

Viruses

November 2024

Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 220, Senegal.

Babanki virus is a subtype of the Sindbis virus, a widespread arthropod-borne alphavirus circulating in Eurasia, Africa, and Oceania. Characterized by rashes and arthritis, clinical infections due to Sindbis were mainly reported in Africa, Australia, Asia, and Europe. However, its sub-type, Babanki virus, was reported in Northern Europe and Africa, where its epidemiology potential remains poorly understood.

View Article and Find Full Text PDF

Cellular takeover: How new world alphaviruses impact host organelle function.

Virology

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. Electronic address:

Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission.

View Article and Find Full Text PDF

Overwintering of Usutu virus in mosquitoes, The Netherlands.

Parasit Vectors

December 2024

Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.

Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.

View Article and Find Full Text PDF

The genus Alphavirus harbors arboviruses of great concern, such as the Chikungunya virus and the equine encephalitis viruses. Transmission of pathogenic alphaviruses by mosquitoes could be influenced by insect-specific alphaviruses such as Eilat virus (EILV). However, insect-specific alphaviruses are rarely found in wild mosquitoes and only a few have been described in the literature.

View Article and Find Full Text PDF

Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!