The angiotensin II (Ang II) type 2 (AT(2)) receptor is an atypical seven-transmembrane domain receptor. Controversy surrounding this receptor concerns both the nature of the second messengers produced as well as its associated signaling mechanisms. Using the neuronal cell line NG108-15, we have reported previously that activation of the AT(2) receptor induced morphological differentiation in a p21(ras)-independent, but p42/p44(mapk)-dependent mechanism. The activation of p42/p44(mapk) was delayed, sustained, and had been shown to be essential for neurite elongation. In the present report, we demonstrate that activation of the AT(2) receptor rapidly, but transiently, activated the Rap1/B-Raf complex of signaling proteins. In RapN17- and Rap1GAP-transfected cells, the effects induced by Ang II were abolished, demonstrating that activation of these proteins was responsible for the observed p42/p44(mapk) phosphorylation and for morphological differentiation. To assess whether cAMP was involved in the activation of Rap1/B-Raf and neuronal differentiation induced by Ang II, NG108-15 cells were treated with stimulators or inhibitors of the cAMP pathway. We found that dibutyryl cAMP and forskolin did not stimulate Rap1 or p42/p44(mapk) activity. Furthermore, adding H-89, an inhibitor of protein kinase A, or Rp-8-Br-cAMP-S, an inactive cAMP analog, failed to impair p42/p44(mapk) activity and neurite outgrowth induced by Ang II. The present observations clearly indicate that cAMP, a well known stimulus of neuronal differentiation, did not participate in the AT(2) receptor signaling pathways in the NG108-15 cells. Therefore, the AT(2) receptor of Ang II activates the signaling modules of Rap1/B-Raf and p42/p44(mapk) via a cAMP-independent pathway to induce morphological differentiation of NG108-15 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M202446200 | DOI Listing |
Cell Rep
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by excess accumulation of the extracellular matrix (ECM). The role of macrophage-fibroblast crosstalk in lung fibrogenesis is incompletely understood. Here we found that fibroblast growth factor-inducible molecule 14 (Fn14), the receptor for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is highly induced in myofibroblasts in the lungs of IPF patients and the bleomycin-induced lung fibrosis model.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Hypertension is a cardiovascular disease defined by an elevated systemic blood pressure. This devastating disease afflicts 30-40% of the adult population worldwide. The disease burden for hypertension is great, and it greatly increases the risk of cardiovascular morbidity and mortality.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK. Electronic address:
Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), but more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R.
View Article and Find Full Text PDFEndocr Res
December 2024
Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
Background: In patients with diabetes mellitus (DM), vascular endothelial dysfunction (VED) is the main reason for impaired life expectancy. Melatonin (MEL) demonstrates wide-ranging effects across various organs and exhibits pleiotropic characteristics. The current study aims to investigate the modulatory roles of MEL vascular response to angiotensin II (Ang II) and its receptors including angiotensin type 1 receptor (AT-1 R) and angiotensin type 2 receptor (AT-2 R) in isolated thoracic aorta of non-diabetes (non-DM) and diabetes (DM) rats.
View Article and Find Full Text PDFBMC Nephrol
December 2024
Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!