A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel transcriptional inhibitory element differentially regulates the cyclin D1 gene in senescent cells. | LitMetric

A novel transcriptional inhibitory element differentially regulates the cyclin D1 gene in senescent cells.

J Biol Chem

Southern Alberta Cancer Research Centre, Department of Biochemistry and Molecular Biology, Cancer Biology Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada.

Published: February 2003

Senescent human diploid fibroblasts are unable to initiate DNA synthesis following mitogenic stimulation and adopt a unique gene expression profile distinct from young or quiescent cells. In this study, a novel transcriptional regulatory element was identified in the 5'-untranslated region of the cyclin D1 gene. We show that this element differentially suppresses cyclin D1 expression in young versus senescent fibroblasts. Electrophoretic mobility shift assays revealed abundant complexes forming with young cell nuclear extracts compared with senescent cell nuclear extracts. Binding was maintained in young quiescent cells, showing that loss of this activity was specific to senescent cells and not an effect of cell cycle arrest. Site-directed mutagenesis within this cyclin D1 inhibitory element (DIE) abolished binding activity and selectively increased cyclin D1 promoter activity in young but not in senescent cells. Sequences with homology to the DIE were found in the 5'-untranslated regions of other genes known to be up-regulated during cellular aging, suggesting that protein(s) that bind the DIE might be responsible for the coordinate increase in transcription of many genes during cellular aging. This study provides evidence that loss of transcriptional repressor activity contributes to the up-regulation of cyclin D1, and possibly additional age-regulated genes, during cellular senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M210864200DOI Listing

Publication Analysis

Top Keywords

senescent cells
12
novel transcriptional
8
inhibitory element
8
element differentially
8
cyclin gene
8
young quiescent
8
quiescent cells
8
cell nuclear
8
nuclear extracts
8
cellular aging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!