Modeling the toxicity of polar and nonpolar narcotic compounds to luminescent bacterium Shk1.

Environ Toxicol Chem

Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA.

Published: December 2002

AI Article Synopsis

Article Abstract

Luminescent bacterium Shk1 was created for the purpose of testing and screening the toxicity of activated sludge wastewater treatment plant influent to avoid toxic shock to the wastewater treatment plant microorganisms. The toxicity of a number of organic compounds was tested using an assay employing Shk1. Because these compounds exhibit toxicity by mechanisms of both polar and nonpolar narcosis, their toxicity cannot be properly modeled together using a quantitative structure-activity relationship model based on the logarithm of the octanol-water partition coefficient (log K(ow)). A solvation parameter model was developed to describe and predict the nonspecific (i.e., polar and nonpolar narcosis) toxicity of organic compounds to Shk1, which does not depend on the discrimination between polar and nonpolar narcotic compounds. The statistically significant model descriptors were the McGowan's characteristic volume (V(x)) and the hydrogen-bond basicity (sigmabetaH). The model was similar to the solvation parameter model developed for Vibrio fischeri, but it did not include an excess molar refraction (R) term.

Download full-text PDF

Source

Publication Analysis

Top Keywords

polar nonpolar
16
nonpolar narcotic
8
narcotic compounds
8
luminescent bacterium
8
bacterium shk1
8
wastewater treatment
8
treatment plant
8
organic compounds
8
nonpolar narcosis
8
narcosis toxicity
8

Similar Publications

A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely.

View Article and Find Full Text PDF

2D Van der Waals Sliding Ferroelectrics Toward Novel Electronic Devices.

Small

January 2025

Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Ferroelectric materials, celebrated for their switchable polarization, have undergone significant evolution since their early discovery in Rochelle salt. Initial challenges, including water solubility and brittleness, are overcome with the development of perovskite ferroelectrics, which enable the creation of stable, high-quality thin films suitable for semiconductor applications. As the demand for miniaturization in nanoelectronics has increased, research has shifted toward low-dimensional materials.

View Article and Find Full Text PDF

The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.

View Article and Find Full Text PDF

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Two-dimensional (2D) materials with spontaneous polarization can exhibit large second-order nonlinear optical (NLO) effects. Here, we present a series of stable distorted monolayers by using first-principles calculations and lattice vibration analysis. The structural distortion leads to a lower polar symmetry, giving rise to intrinsic ferroelectricity with a Curie point up to room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!