Four inversion schemes based on various retrieval approaches (digital gas correlation, nonlinear least squares, global fit adjustment, and neural networks) developed to retrieve CO from nadir radiances measured by such downward-looking satelliteborne instruments as the Measurement of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Infrared Atmospheric Sounding Interferometer (IASI) instruments were compared both for simulated cases and for atmospheric spectra recorded by the Interferometric Monitor for Greenhouse Gases (IMG). The sensitivity of the retrieved CO total column amount to properties that may affect the inversion accuracy (noise, ancillary temperature profile, and water-vapor content) was investigated. The CO column amounts for the simulated radiance spectra agreed within 4%, whereas larger discrepancies were obtained when atmospheric spectra recorded by the IMG instrument were analyzed. The assumed vertical temperature profile is shown to be a critical parameter for accurate CO retrieval. The instrument's line shape was also identified as a possible cause of disagreement among the result provided by the groups of scientist who are participating in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.41.007068DOI Listing

Publication Analysis

Top Keywords

atmospheric spectra
8
spectra recorded
8
temperature profile
8
retrieval nadir
4
nadir remote-sensing
4
remote-sensing measurements
4
measurements infrared
4
infrared inversion
4
inversion algorithms
4
algorithms inversion
4

Similar Publications

Hydroperoxymethyl thioformate (or HPMTF) is a compound relevant to the chemistry of sulfur in the marine atmosphere. The chemical cycling of this molecule in the atmosphere is still uncertain due in part to the lack of accurate knowledge of its photolytic behavior. Only approximations based on the properties of its chromophores are used in previous studies.

View Article and Find Full Text PDF

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

A novel remote deep ultraviolet laser ablation inlet connected to a dual electrospray ionization-atmospheric pressure chemical ionization (rDUVLAESCI) source is presented. This system allows for the simultaneous and spatial acquisition of mass spectrometry (MS) data for organic molecules with diverse polarities and molecular weights. Deep 193 nm UV laser ablation was used to sample analytes from dried spots for molecular MS analysis precisely.

View Article and Find Full Text PDF

Pyruvic acid is an omnipresent compound in nature and is found both in the gas phase and in the particle phase of the atmosphere as well as in aqueous solution in the hydrosphere. Despite much literature on the photochemical degradation and stability of pyruvic acid in different chemical environments, the study of simultaneous interactions between gas-phase pyruvic acid or similar carboxylic acids with water and ions is not well-understood. Here, we present a study of microhydrated molecular clusters containing pyruvic acid and the structurally analogous carboxylic acids lactic acid, propionic acid, and 2,2-dihydroxypropanoic acid by probing geometries, binding free energies, hydrate distributions, as well as their infrared (IR) absorption spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!