Originally designed for use at medical-imaging x-ray energies, imaging systems comprising scintillating screens and amorphous Si detectors are also used at the megavoltage photon energies typical of portal imaging and industrial radiography. While image blur at medical-imaging x-ray energies is strongly influenced both by K-shell fluorescence and by the transport of optical photons within the scintillator layer, at higher photon energies the image blur is dominated by radiation scattered from the detector housing and internal support structures. We use Monte Carlo methods to study the blurring in a notional detector: a series of semi-infinite layers with material compositions, thicknesses, and densities similar to those of a commercially available flat-panel amorphous Si detector system comprising a protective housing, a gadolinium oxysulfide scintillator screen, and associated electronics. We find that the image blurring, as described by a point-spread function (PSF), has three length scales. The first component, with a submillimeter length scale, arises from electron scatter within the scintillator and detection electronics. The second component, with a millimeter-to-centimeter length scale, arises from electrons produced in the front cover of the detector. The third component, with a length scale of tens of centimeters, arises from photon scatter by the back cover of the detector. The relative contributions of each of these components to the overall PSF vary with incident photon energy. We present an algorithm that includes the energy-dependent sensitivity and energy-dependent PSF within a ray-tracing formalism. We find quantitative agreement (approximately 2%) between predicted radiographs with radiographs of copper step wedges, taken with a 9 MV bremsstrahlung source and a commercially available flat-panel system. The measured radiographs show the blurring artifacts expected from both the millimeter-scale electron transport and from the tens-of-centimeters length scale arising from the scattered photon transport. Calculations indicate that neglect of the energy-dependent blurring would lead to discrepancies in the apparent transmission of these wedges of the order of 9%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.1513159 | DOI Listing |
Plants (Basel)
December 2024
Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy.
Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of .
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Sede Vallenar, Universidad de Atacama, Costanera 105, Vallenar 1612178, Chile.
The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short channel effects (SCEs). Consequently, to facilitate further increases in the drain current, the use of strained silicon technology provides a better solution.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.
Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Fundeni Clinical Institute, 022328 Bucharest, Romania.
: Amyloidosis is a disorder characterized by the abnormal folding of proteins, forming insoluble fibrils that accumulate in tissues and organs. This accumulation disrupts normal tissue architecture and organ function, often with serious consequences, including death if left untreated. Light-chain amyloidosis (AL) and hereditary transthyretin-type amyloidosis (hATTR) are two of the most common types.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Department of Replantation and Reconstruction, Centre of Postgraduate Medical Education, Professor A. Gruca Teaching Hospital, Konarskiego 13, 05-400 Otwock, Poland.
Successful treatment of severe trauma and fractures of the long bones with successful healing and bone union is still a significant challenge for surgeons. Unfortunately, up to 10% of long-bone fractures develop bone healing disorders. The aim of this study was to evaluate the results of treating bone defects with different etiologies in the upper and lower extremities using the induced membrane technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!