When cells within the intrapulmonary compartment are exposed to pathogens or their products such as lipopolysaccharide, they produce CXC chemokines in order to attract circulating neutrophils into the lower respiratory tract. Previous studies have shown that as neutrophils (PMNs) enter the lung, bronchoalveolar lavage (BAL) chemokine levels are decreased. In this study, we determined the intrapulmonary and systemic responses to two important rat chemokines, cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2), to intratracheal (i.t.) LPS (100 microg in 0.5 mL of phosphate-buffered saline) under neutropenic (cyclophosphamide [CPA]) and neutrophilic (G-CSF) conditions. By 4 h after i.t. LPS, CPA pretreatment decreased PMN recruitment 83% and G-CSF increased PMN recruitment 91% compared with recruitment into the lung in vehicle-pretreated rats (42.7 +/- 19.3 million PMNs). Neutropenic rats had increased CINC and MIP-2 concentrations in BAL fluid 4 h after i.t. LPS when compared with levels seen in vehicle controls (P < 0.05). In vitro LPS-stimulated chemokine production by alveolar macrophages obtained from CPA- and vehicle-pretreated animals did not differ. The increase in BAL fluid chemokine levels in neutropenic rats corresponded to increased chemotaxis of neutrophils to BAL fluid from CPA-pretreated rats as compared with the chemotaxis response of PMN to BAL fluid from vehicle-pretreated rats. In contrast, G-CSF enhancement of neutrophil recruitment decreased chemotactic activity of BAL fluid collected 4 h after i.t. LPS. These data show that as neutrophils are recruited into the lung, they alter chemokine levels, which most likely serves to down-regulate the inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00024382-200212000-00012DOI Listing

Publication Analysis

Top Keywords

bal fluid
20
chemokine levels
12
pmn recruitment
8
vehicle-pretreated rats
8
neutropenic rats
8
bal
6
chemokine
5
rats
5
fluid
5
neutrophil modulation
4

Similar Publications

Single-cell RNA sequencing (scRNA-seq) is a valuable tool for investigating cellular heterogeneity in diseases such as equine asthma (EA). This study evaluates the HIVE™ scRNA-seq method, a pico-well-based technology, for processing bronchoalveolar lavage (BAL) cells from horses with EA. The HIVE method offers practical advantages, including compatibility with both field and clinical settings, as well as a gentle workflow suited for handling sensitive cells.

View Article and Find Full Text PDF

Silymarin is a polyphenolic flavonoid extracted from milk thistle. It has potent immunomodulatory effects and can inhibit the replication of influenza A virus (IAV). The present study aimed to determine the inflammatory and anti-inflammatory cytokine secretion patterns in mice before and after silibinin treatment.

View Article and Find Full Text PDF

Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.

Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.

View Article and Find Full Text PDF

Genomic insights into a multidrug-resistant Pandoraea apista clinical isolate carrying bla from China.

J Glob Antimicrob Resist

January 2025

Clinical Laboratory Department, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China. Electronic address:

Objectives: Pandoraea apista is notable for its multidrug resistance and is frequently identified in patients with cystic fibrosis or other chronic lung diseases, where it contributes to persistent lung infections. In this study, we describe a strain of P. apista harboring the bla, isolated from the bronchoalveolar lavage (BAL) fluid of an inpatient in China.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!