Pathophysiology of burn injury with complications of gram-positive infections is not well characterized. We have developed an in vivo rat model to study the effects of burn injury along with intra-abdominal inoculation of Enterococcus faecalis. We hypothesized that although burn injury or E. faecalis inoculation by itself may not induce significant pathophysiological responses, the combination of the two can lead to adverse pathophysiological consequences. Sprague-Dawley rats were divided into 4 groups: group 1(C), controls; group 2(B), burn injury on 30% total body surface area; group 3(EF), intra-abdominal implantation of bacterial pellet impregnated with E. faecalis; group 4(B+EF), burn injury plus bacterial pellet implantation. The mortality was 25% and 60% on day 1 and 2 in Group 4(B+EF), respectively; no significant mortality was observed in other groups. In group 4(B+EF), metabolic acidosis, respiratory alkalosis, and a hyperdynamic state developed on day 1, and metabolic and respiratory acidosis and a hypodynamic state on day 2. There were no significant alterations in metabolic or hemodynamic measurements in other groups. Intestinal microvascular permeability to albumin on day 1 and 2 was increased in group 4(B+EF). In group 2(B), microvascular permeability was not increased significantly. Although the permeability was increased on day 1 in group 3(EF), it declined on day 2. The metabolic and hemodynamic alterations were correlated with increased intestinal microvascular permeability to albumin. E. faecalis appeared to be involved in initiating a vicious cycle of burn injury-mediated disruption of intestinal integrity along with metabolic and hemodynamic derangements.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00024382-200212000-00007DOI Listing

Publication Analysis

Top Keywords

burn injury
20
group 4b+ef
16
metabolic hemodynamic
12
microvascular permeability
12
group
9
enterococcus faecalis
8
groups group
8
group 3ef
8
bacterial pellet
8
day group
8

Similar Publications

Outcomes of electrical injuries in the emergency department: epidemiology, severity predictors, and chronic sequelae.

Eur J Trauma Emerg Surg

January 2025

Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.

Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.

View Article and Find Full Text PDF

[Not Available].

Surg Technol Int

January 2025

Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York.

Thermal or burn injuries cause coagulative necrosis of the epidermis and underlying tissues and the resultant wounds can be long lasting and highly painful. Depending on the depth of a burn, management ranges from local wound care to surgical intervention. When presented with deep-partial thickness and full-thickness burns, autologous skin grafting has been the mainstay of management to prevent scarring and promote healing.

View Article and Find Full Text PDF

Endogenous retroviral (ERV) RNA is highly expressed in cancer, although the molecular causes and consequences remain unknown. We found that ZC3H18 (Z18), a component of multiple nuclear RNA surveillance complexes, has recurrent truncating mutations in cancer. We show that Z18 mutations are oncogenic and that Z18 plays an evolutionarily conserved role in nuclear RNA surveillance of ERV RNA.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

BSP promotes skin wound healing by regulating the expression level of SCEL.

Cytotechnology

April 2025

Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.

Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!