The oestrogenized rat myometrium inhibits organotypic sympathetic reinnervation.

Auton Neurosci

Laboratorio de Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay.

Published: October 2002

Chronic administration of oestrogen to rats during the infantile/prepubertal period provokes, at 28 days of age, complete loss of noradrenaline-labelled intrauterine sympathetic nerves. It is not known whether oestrogen inhibits the growth or causes the degeneration of developing uterine sympathetic nerves, or whether the uterus recovers its innervation following cessation of infantile/prepubertal oestrogen treatment. In the present study, we analysed the time-course of the effects of oestrogen on the development of uterine sympathetic nerves in the rat, using histochemical methods. In addition, the pattern of sympathetic reinnervation of the uterus of intact and ovariectomised females was assessed 3 and 6 months after cessation of chronic oestrogen treatment. The ability of sympathetic nerves to reinnervate the oestrogenized uterine tissue was assessed in intraocular transplants of uterine myometrium into ovariectomised host rats. Early exposure to oestrogen did not inhibit the approach of sympathetic nerves to the uterus, but prevented the normal growth and maturation of intrauterine sympathetic fibres and abolished the innervation that reached the organ before initiation of treatment. Three or six months following cessation of oestrogen treatment, most of the sympathetic nerves were restricted to the mesometrium and mesometrial entrance, whereas intrauterine innervation remained persistently depressed as a consequence of a sustained oestrous-like state provoked by ovarian dysfunction (polycystic ovary). An organotypic regrowth of uterine sympathetic nerves was observed in ovariectomised infantile/prepubertal oestrogen-treated animals. After 5 weeks in oculo, the innervation of oestrogenized myometrial transplants was reduced by 50%, and substantial changes in the pattern of reinnervation were observed. In control transplants, 86% of the nerves were terminal varicose myometrial and perivascular nerve fibres, whereas 14% were preterminal nerve bundles. In oestrogenized myometrial transplants, 83% of the noradrenaline-labelled intercepting nerves were enlarged preterminal bundles and only 17% were terminal fibres. These results indicate that the oestrogenized myometrium is unattractive for sympathetic nerves and inhibits organotypic sympathetic reinnervation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1566-0702(02)00173-xDOI Listing

Publication Analysis

Top Keywords

sympathetic nerves
32
sympathetic
12
sympathetic reinnervation
12
uterine sympathetic
12
oestrogen treatment
12
nerves
10
inhibits organotypic
8
organotypic sympathetic
8
intrauterine sympathetic
8
nerves uterus
8

Similar Publications

Progressive Increase in Renal Sympathetic Nerve Activity Induced by Cold Exposure.

Hypertension

January 2025

Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Japan.

Background: Exposure to cold environments is linked to cold-induced hypertension due to activated sympathetic nerve activity (SNA) and arterial baroreceptor reflex dysfunction. However, direct measurement of SNA during cold-induced hypertension and changes in baroreflex control of SNA remain unexplored.

Methods: Chronically instrumented rats were exposed to cold temperatures (10 °C) over 4 days after a control period (24 °C), and renal and lumbar sympathetic nerve activities were simultaneously measured during cold-induced hypertension.

View Article and Find Full Text PDF

Background And Objective: Diabetic neuropathy significantly elevates the risk of foot ulceration and lower-limb amputation, underscoring the need for precise assessment of tissue perfusion to optimize management. This narrative review explores the intricate relationship between sympathetic nerves and tissue perfusion in diabetic neuropathy, highlighting the important role of autonomic neuropathy in blood flow dynamics and subsequent compromises in tissue perfusion. The consequences extend to the development of diabetic peripheral neuropathy and related foot complications.

View Article and Find Full Text PDF

Failed Spinal Anesthesia: Incidence and Associated Factors.

Cureus

December 2024

Department of Anaesthesiology, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND.

Introduction Spinal anesthesia, a commonly used technique for lower abdominal, pelvic, and lower extremity surgeries, involves injecting a local anesthetic into the subarachnoid space to temporarily block sensory, motor, and sympathetic nerves. Despite its high success rate, the failure of spinal anesthesia, which can lead to adverse patient outcomes, remains a concern. The failure rate varies widely, from 1% to 17%, influenced by factors such as technical challenges, patient anatomy, and practitioner experience.

View Article and Find Full Text PDF

Downregulation of CCR2 reduces ventricular remodeling after myocardial infarction by splenic nerve neuromodulation in acute and chronic rat models.

Int Immunopharmacol

January 2025

Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China. Electronic address:

Objectives: Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism.

View Article and Find Full Text PDF

Sympathetic nerve signaling rewires the tumor microenvironment: a shift in "microenvironmental-ity".

Cancer Metastasis Rev

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!