Genetic relationships of American alligator populations distributed across different ecological and geographic scales.

J Exp Zool

The Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA.

Published: December 2002

Although much work has been conducted on coastal populations of the American alligator (Alligator mississippiensis), less is known about the population dynamics and genetic structure of populations of alligators confined to inland habitats. DNA microsatellite loci, derived from the American alligator, were used to investigate patterns of genetic variation within and between populations of alligators distributed at coastal and inland localities in Texas. These data were used to evaluate the genetic discreteness of different alligator stocks relative to their basic ecology at these sites. Observed mean heterozygosities across seven loci for both coastal and inland populations ranged from 0.50-0.61, with both inland and coastal populations revealing similar patterns of variation. Measures of F(st) revealed significant population differentiation among all populations; however, analyses of molecular variance (AMOVAs) failed to demonstrate any apparent geographic pattern relative to the population differentiation indicated by F(st) values. Each population contained unique alleles for at least one locus. Additionally, assignment tests based on the distribution of genotypes placed 76% of individuals to their source population. These genetic data suggest considerable subdivision among alligator populations, possibly influenced by demographic and life history differences as well as barriers to dispersal. These results have clear implications for management. Rather than managing alligators in Texas as a single panmictic population, translocation programs and harvest quotas should consider the ecological and genetic distinctiveness of local alligator populations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jez.10207DOI Listing

Publication Analysis

Top Keywords

american alligator
12
alligator populations
12
populations
9
coastal populations
8
populations alligators
8
coastal inland
8
population differentiation
8
alligator
7
genetic
6
population
6

Similar Publications

Background: Hepatocellular carcinoma (HCC) is a significant health problem associated with several risk factors, increasingly driven by non-alcoholic steatohepatitis and metabolic syndrome. This association poses a challenge for the primary treatments of HCC, which may include immune checkpoint inhibitors and vascular endothelial growth factor inhibitors, due to their potential cardiotoxic effect. Therefore, it is imperative to balance the therapeutic effects of these agents with their potential cardiovascular adverse events.

View Article and Find Full Text PDF

Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.

Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.

View Article and Find Full Text PDF

This study was undertaken to explore the forces acting on the pes during pedal anchoring and to discern if pedal anchoring required the activation of the intrinsic pedal musculature. Replica feet equipped with strain gauges were moved over mud substrate, mimicking locomotion and pedal anchoring. Quantification of the substrate tracks demonstrated that they were similar to those made by freely moving , that the locomotor and pedal anchoring tracks were significantly different, and that the composition of the artificial feet significantly altered the tracks.

View Article and Find Full Text PDF

Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.

View Article and Find Full Text PDF

Bone loading is a crucial factor that constrains locomotor capacities of terrestrial tetrapods. To date, limb bone strains and stresses have been studied across various animals, with a primary emphasis on consistent bone loading in mammals of different sizes and variations in loading regimes across different clades and limb postures. However, the relationships between body size, limb posture and limb bone loading remain unclear in animals with non-parasagittally moving limbs, limiting our understanding of the evolution of limb functions in tetrapods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!