Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end-joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM(+) B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194268 | PMC |
http://dx.doi.org/10.1084/jem.20001871 | DOI Listing |
Nat Commun
November 2024
Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
Adv Biol Regul
November 2024
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. Electronic address:
PeerJ
November 2024
Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Neuronal apoptosis, oxidative stress, and ferroptosis play a crucial role in the progression of secondary brain injury following intracerebral hemorrhage (ICH). Although studies have highlighted the important functions of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in various experimental models, its precise role and mechanism in ICH remain unclear. In this study, we investigated the effects of DNA-PKcs on N2A cells under a hemin-induced hemorrhagic state and a rat model of collagenase-induced ICH .
View Article and Find Full Text PDFCell Mol Life Sci
November 2024
Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
Efficient DNA double strand break (DSB) repair is necessary for genomic stability and determines efficacy of DNA damaging cancer therapeutics. Spatiotemporal dynamics and post-translational modifications of repair proteins at DSBs dictate repair efficacy. Here, we identified a non-canonical function of GCN5 in regulating both HR and NHEJ repair post genotoxic stress.
View Article and Find Full Text PDFExp Hematol Oncol
November 2024
Department of Biochemistry and Molecular Biology, The Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
Background: The activation of the DNA damage response (DDR) heavily relies on post-translational modifications (PTMs) of proteins, which play a crucial role in the prevention of genetic instability and tumorigenesis. Among these PTMs, palmitoylation is a highly conserved process that is dysregulated in numerous cancer types. However, its direct involvement in the DDR and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!