N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwf082DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
glycan processing
8
endoplasmic reticulum
8
alg12delta
4
cerevisiae alg12delta
4
alg12delta mutant
4
mutant reveals
4
reveals role
4
role middle-arm
4
middle-arm alpha12man-
4

Similar Publications

Dual modes of DNA N-methyladenine maintenance by distinct methyltransferase complexes.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.

View Article and Find Full Text PDF

Although we have a good understanding of how phenotypic plasticity evolves in response to abiotic environments, we know comparatively less about responses to biotic interactions. We experimentally tested how competition and mutualism affected trait and plasticity evolution of pairwise communities of genetically modified brewer's yeast. We quantified evolutionary changes in growth rate, resource use efficiency (RUE), and their plasticity in strains evolving alone, with a competitor, and with a mutualist.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of autolyzed yeast (obtained from culture of Saccharomyces cerevisiae in sugarcane derivatives) supplementation on diet digestibility, feeding behavior, levels of blood metabolites associated with protein and energy metabolism, and performance of Dorper × Santa Ines lambs finished in feedlot. Twenty-four non-castrated male lambs with an average age of 4 months and a body weight (BW) of 19.49 ± 3.

View Article and Find Full Text PDF

Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!