The neurotransmitter glutamate influences intracellular Ca(2+) levels and plays an essential role in maintaining neuronal viability during early development. Blockade of NMDA receptors induces cell death in the neonatal forebrain via mechanisms that are not understood. Other neuromodulators that can influence intracellular Ca(2+) levels include the nucleoside adenosine, which acts via A(1) adenosine receptors subtypes (A(1)ARs). Because A(1)AR activation inhibits glutamate release and action, A(1)AR activation may also contribute to neonatal brain injury. To examine this possibility, we treated primary neuronal cultures with the A(1)AR agonist CPA, the NMDAR antagonist MK801, or CPA + MK801. Combined MK801 + CPA treatment resulted in profound cellular injury, exceeding that seen in other groups. In keeping with the hypothesis that altered Ca(2+) signaling mediates CPA + MK801 injury, reduction of Ca(2+) levels with EGTA, thapsigargin, or BAPTA-AM enhanced CPA + MK801-induced neuronal damage. In contrast, increasing intracellular Ca(2+) using ionomycin reversed CPA + MK801 toxicity. Direct visualization of intracellular Ca(2+) by confocal microscopy revealed that CPA + MK801 inhibited KCl-evoked increases in intracellular Ca(2+). Supporting the concept that A(1)AR activation and NMDAR blockade results in brain injury, neonatal rats injected with A(1)AR agonists + MK801 showed widespread apoptosis in many brain regions. These observations show that A(1)AR activation and NMDAR blockade lead to early postnatal cell injury by mechanisms that involve inhibition of intracellular Ca(2+) signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.2002.8027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!