Candida Albicans: a molecular revolution built on lessons from budding yeast.

Nat Rev Genet

Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA.

Published: December 2002

Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, in immunocompromised patients, blood-stream infections often cause death, despite the use of anti-fungal therapies. The recent completion of the C. albicans genome sequence, the availability of whole-genome microarrays and the development of tools for rapid molecular-genetic manipulations of the C. albicans genome are generating an explosion of information about the intriguing biology of this pathogen and about its mechanisms of virulence. They also reveal the extent of similarities and differences between C. albicans and its benign relative, Saccharomyces cerevisiae.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrg948DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
albicans genome
8
albicans molecular
4
molecular revolution
4
revolution built
4
built lessons
4
lessons budding
4
budding yeast
4
yeast candida
4
albicans
4

Similar Publications

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Microspheres based on galactomannan and Spondias purpurea L. extract to increase antifungal and antibiofilm efficacy against Candida spp.

Int J Biol Macromol

January 2025

Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:

The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance and free radical-mediated oxidative stress and inflammation involved in many pathological processes have become treatment challenges. One strategy is to search for antimicrobial and antioxidant ingredients from natural aromatic plants. This study established a rapid and high-throughput effect-component analysis method to screen active ingredients from Ligusticum chuanxiong essential oil (CXEO).

View Article and Find Full Text PDF

Background: Vulvovaginal candidiasis (VVC), caused primarily by Candida albicans, is currently treated with either prescription or over-the-counter antifungal drugs, often with variable efficacy and relapses. New and improved therapeutic strategies, including drug-free treatment alternatives, are needed. Upon overgrowth or environmental triggers, C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!