Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0028-3932(02)00148-3 | DOI Listing |
Nat Commun
January 2025
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.
View Article and Find Full Text PDFLearn Mem
December 2024
Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas 78712, USA
Emotional intensity can produce both optimal and suboptimal effects on learning and memory. While emotional events tend to be better remembered, memory performance can follow an inverted U-shaped curve with increasing intensity. The strength of Pavlovian conditioning tends to increase linearly with the intensity of the aversive outcome, but leads to greater stimulus generalization.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Neuroscience, University of Minnesota.
Ventral tegmental area (VTA) dopamine (DA) neurons are classically linked to Pavlovian reward learning and reinforcement. Intermingled VTA GABA neurons are positioned to regulate dopaminergic and striatal systems, but we lack critical insight into how this population contributes to conditioned motivation in different learning contexts. Recording DA and GABA neurons across multiple conditioning paradigms, we found that GABA neurons not only actively encode appetitive and aversive cues and outcomes separately, but uniquely integrate salient events of both valences to guide reward seeking.
View Article and Find Full Text PDFNeuroimage
December 2024
Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China; Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, 311121, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, 311121, China. Electronic address:
Social equity consists of opportunity equity and outcome equity, where outcome equity refers to the equitable distribution of resource, while opportunity equity refers to equivalent sets of opportunities to obtain a satisfactory outcome, ensuring equality in expected payoffs rather than the actual payoffs. Previous studies showed the existence of inequity aversion for opportunity inequality and identified some differences between opportunity equity and outcome equity in the behavior pattern of evaluation and reaction processes. However, the commonalities and distinctions in brain activity during the fairness decision-making of opportunity equity and outcome equity remain unclear.
View Article and Find Full Text PDFElife
December 2024
Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
Rats are believed to communicate their emotional state by emitting two distinct types of ultrasonic vocalizations. The first is long '22-kHz' vocalizations (>300 ms, <32-kHz) with constant frequency, signaling aversive states, and the second is short '50-kHz' calls (<150 ms, >32 kHz), often frequency-modulated, in appetitive situations. Here, we describe aversive vocalizations emitted at a higher pitch by male Wistar and spontaneously hypertensive rats (SHR) in an intensified aversive state - prolonged fear conditioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!