Quenching of the fluorescence of a Leonardite humic acid by Co(II) has been studied at different pH. The interaction was monitored by emission fluorescence and by synchronous fluorescence with two different offsets (deltalambda=20 and 80 nm). It was found that synchronous fluorescence performed with the smaller offset resolves the individual components of the heterogeneous material better than emission or synchronous fluorescence performed with the larger offset. Enhancement of the signal induced by Cobalt(II) complexation resulted in more complex behavior for measurements performed by synchronous fluorescence with an offset of 20 nm, however. The quenching profiles obtained for pH 5.0, 6.0, and 7.0 ([KNO(3)]=0.1 mol L(-1); [LHA]=3.3 mg(C) L(-1); [Co(II)]=1.0 x 10(-6)-1.6 x 10 (-3) mol L(-1)) by emission and synchronous (deltalambda=80 nm) fluorescence were analyzed by two methods: 1. a non-linear least-squares procedure that leads to conditional constants; and 2. a pH-dependent discrete logK spectrum model that leads to stability constants. The first method resulted in poor fitting and unreasonable values for maximum capacities. The second procedure resulted in smooth fitting that accounted well for the pH changes when results for pH 6.0 and 5.0 were predicted by use of the four values of logK(Co)(i) (4.31, 3.76, 7.32, and 7.67 corresponding to the four sites (i) of the respective pKa(i) values 4, 6, 8, and 10) calculated at pH 7.0 for the equilibrium
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-002-1580-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!