A 38-base DNA sequence has been detected at 20 pmol L(-1) concentration in 15-35- microL droplets by means of an electrochemical enzyme-amplified sandwich-type assay on a mass-manufacturable screen-printed carbon electrode. Formation of the sandwich brought the horseradish peroxidase-label of the detection sequence into electrical contact with a pre-electrodeposited redox polymer, making the sandwich an electrocatalyst for the reduction of hydrogen peroxide to water at +0.2 V (Ag/AgCl). Sensitivity twenty times better than that of a related system resulted from: 1. fivefold reduction of the noise by substituting the formerly used poly( N-vinyl imidazole)-co-acrylamide comprising redox co-polymer with poly(4-vinyl pyridine)-co-acrylamide comprising redox polymer, enabling use of the electrodes at a more oxidizing potential at which noise (the rate of non-enzyme catalyzed electroreduction currents of dissolved oxygen and hydrogen peroxide) was lower; 2. doubling of the catalytic electroreduction current upon electrodeposition of a second layer of the redox polymer on the capture sequence-containing film; and 3. doubling of the current by increasing the coverage by the capture sequence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-002-1604-4 | DOI Listing |
Polymers (Basel)
December 2024
School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.
Pyrene (Pr) was used to improve the electrochemical and electrochromic properties of polythiophene copolymerized with 3,4-ethylenedioxythiophene (EDOT). The corresponding product, poly(3,4-ethylenedioxythiophene-co-Pyrene) (P(EDOT-co-Pr)), was successfully synthesized by electrochemical polymerization with different monomer concentrations in propylene carbonate solution containing 0.1 M lithium perchlorate (LiClO/PC (0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia.
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures.
View Article and Find Full Text PDFMolecules
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
In this article, a series of novel conducting copolymers P(FuPy--EDOT) are prepared via cyclic voltammetry electropolymerization method by using N-furfuryl pyrrole (FuPy) and 3,4-ethylenedioxythiophene (EDOT) as comonomers. The molecular structure, surface morphology, electrochemical, and optical properties of the resulting copolymers are characterized in detail upon varying the feed ratios of FuPy/EDOT in the range of 1/1 to 1/9. The results demonstrate that the prepared P(FuPy--EDOT) copolymers with a higher proportion of EDOT units (FuPy/EDOT: 2/8~1/9) possess good redox activity, tunable optical absorption performances, and low band gaps (1.
View Article and Find Full Text PDFChemSusChem
January 2025
University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20127, Milano, ITALY.
Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!