The X-linked lymphoproliferative (XLP) syndrome gene encodes a protein named SAP or SH2D1A that is composed of a single Src homology 2 (SH2) domain. Two models have been proposed for its function in lymphocyte signaling. One postulates that it acts as an inhibitor of interactions between the phosphatase SHP-2 and the immune receptor SLAM. The other suggests that it functions as an adaptor to promote the recruitment of a kinase, FynT, to SLAM. Here, we provide evidence in support of both roles for SAP. Using an array of peptides derived from the SLAM family of receptors, we demonstrate that SAP binds with comparable affinities to the same sites in these receptors as do the SH2 domains of SHP-2 and SHIP, suggesting that these three proteins may compete against one another in binding to a given SLAM family receptor. Furthermore, in vitro and in vivo binding studies indicate that SAP is capable of binding directly to FynT, an interaction mediated by the FynT SH3 domain. In cells, FynT was shown to be indispensable for SLAM tyrosine phosphorylation, which, in turn, was drastically enhanced by SAP. Because SAP also blocked the recruitment of SHP-2 to SLAM in these cells, we propose a dual functional role for SAP in SLAM signaling by acting both as an adaptor for FynT and an inhibitor to SHP-2 binding. The physiological relevance of the dual functional role for SAP is underscored by the observation that disease-causing SAP mutants exhibited significantly reduced affinities to both FynT and SLAM.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206649200DOI Listing

Publication Analysis

Top Keywords

dual functional
12
slam family
12
slam
9
sap
9
x-linked lymphoproliferative
8
syndrome gene
8
fynt slam
8
functional role
8
role sap
8
fynt
6

Similar Publications

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors.

View Article and Find Full Text PDF

Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.

View Article and Find Full Text PDF

Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.

View Article and Find Full Text PDF

Proteic plasmid addiction systems, such as the control of cell death (Ccd), have been used for efficient plasmid DNA recombination. The CcdB toxin, which has a relatively long sequence of 309 bp, has been the predominant choice for this purpose. However, the need for shorter peptide toxins has emerged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!