Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M210480200 | DOI Listing |
Cell Death Dis
December 2024
Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
Poly (ADP-ribose) polymerase 1 (PARP1) catalyzes poly (ADP) ribosylation reaction, one of the essential post-translational modifications of proteins in eukaryotic cells. Given that PARP1 inhibition can lead to synthetic lethality in cells with compromised homologous recombination, this enzyme has been identified as a potent target for anti-cancer therapeutics. However, the clinical application of existing PARP1 inhibitors is restrained by side effects associated with DNA trapping and off-target effects, highlighting the need for improved therapeutic strategies.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) play a key role in DNA repair. As major sensors of DNA damage, they are activated to produce poly(ADP-ribose). PARP1/PARP2 inhibitors have emerged as effective drugs for the treatment of cancers with BRCA deficiencies.
View Article and Find Full Text PDFJ Med Chem
December 2024
Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States.
PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper.
View Article and Find Full Text PDFNat Commun
December 2024
Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden.
Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets.
View Article and Find Full Text PDFOncogene
November 2024
School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!