The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136965PMC
http://dx.doi.org/10.1093/emboj/cdf662DOI Listing

Publication Analysis

Top Keywords

timing oligodendrocyte
8
oligodendrocyte development
8
thyroid hormone
8
opc differentiation
8
tralpha1
5
normal timing
4
oligodendrocyte
4
development depends
4
depends thyroid
4
hormone receptor
4

Similar Publications

To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.

View Article and Find Full Text PDF

Background And Purpose: To determine the clinical phenotypes, relapse timing, treatment responses, and outcomes of children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).

Methods: We collected the demographic, clinical, laboratory, and radiological data of patients aged <18 years who had been diagnosed with MOGAD at Seoul National University Children's Hospital between January 2010 and January 2022; 100 were identified as positive for MOG antibodies, 43 of whom experienced relapse.

Results: The median age at onset was 7 years (range 2-16 years).

View Article and Find Full Text PDF

Recent successes in the identification of biomarkers and therapeutic targets for diagnosing and managing neurological diseases underscore the critical need for cutting-edge biobanks in the conduct of high-caliber translational neuroscience research. Biobanks dedicated to neurological disorders are particularly timely, given the increasing prevalence of neurological disability among the rising aging population. Translational research focusing on disorders of the central nervous system (CNS) poses distinct challenges due to the limited accessibility of CNS tissue pre-mortem.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Introduction Febrile seizures are the most common type of seizure in neurologically healthy children under six years of age. Iron deficiency is a prevalent micronutrient deficiency worldwide, though it is medically preventable and treatable. In many developing countries, anaemia remains a significant concern in young children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!