Adrenomedullin (AM) is a multifunctional peptide that exhibits discrete domains of expression during mouse embryogenesis consistent with a role in regulating growth and differentiation during morphogenesis. Here we report that AM immunoreactivity is present at high levels throughout the apical ectodermal ridge (AER) of the chick limb bud as the AER is directing the outgrowth and patterning of underlying limb mesoderm. Immunostaining is particularly strong along the surfaces of the contiguous cells of the AER. AM immunoreactivity attenuates as the AER regresses and is absent from the distal apical ectoderm of stage 20 limbless mutant limb buds which fail to develop an AER. To explore the possible role of AM in AER activity, we examined the effect of exogenous AM and an AM inhibitor on the in vitro morphogenesis of limb mesoderm, cultured in the presence and absence of the AER. Although exogenous AM cannot substitute for the AER in promoting outgrowth of limb mesoderm in vitro, a specific AM antagonist, AM(22-52), impairs the outgrowth and proliferation of limb mesoderm cultured in the presence of the AER. This is consistent with the possibility that inhibition of endogenous AM activity in the AER impairs the ability of the AER to promote limb morphogenesis. Taken together, these studies suggest that an AM-like molecule may function in an autocrine fashion to regulate some aspect of AER activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

limb mesoderm
16
aer
12
limb
8
chick limb
8
limb bud
8
aer activity
8
mesoderm cultured
8
cultured presence
8
distribution function
4
function adrenomedullin-like
4

Similar Publications

Inclusive, exclusive and hierarchical atlas of NFATc1/PDGFR-α cells in dental and periodontal mesenchyme.

Elife

December 2024

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Platelet-derived growth factor receptor alpha (PDGFR-α) activity is crucial in the process of dental and periodontal mesenchyme regeneration facilitated by autologous platelet concentrates (APCs), such as platelet-rich fibrin (PRF), platelet-rich plasma (PRP) and concentrated growth factors (CGF), as well as by recombinant PDGF drugs. However, it is largely unclear about the physiological patterns and cellular fate determinations of PDGFR-α cells in the homeostasis maintaining of adult dental and periodontal mesenchyme. We previously identified NFATc1 expressing PDGFR-α cells as a subtype of skeletal stem cells (SSCs) in limb bone in mice, but their roles in dental and periodontal remain unexplored.

View Article and Find Full Text PDF

Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin.

View Article and Find Full Text PDF

Modeling of Skeletal Development and Diseases Using Human Pluripotent Stem Cells.

J Bone Miner Res

November 2024

Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.

Article Synopsis
  • Human skeletal elements originate from different parts of the embryo, with specific tissues responsible for the formation of facial bones, the axial skeleton, and the appendicular skeleton.
  • The development of skeletal cells can be modeled using human pluripotent stem cells to replicate the stages of embryonic development and the complexities of skeletal metabolism.
  • Recent advancements include developing organoids and using genome-editing technologies to study genetic skeletal diseases, alongside prospects for precision medicine applications in this field.
View Article and Find Full Text PDF

Mesoderm induction is a crucial step for vascular cell specification, vascular development and vasculogenesis. However, the cellular and molecular mechanisms underlying mesoderm induction remain elusive. In the present study, a chemically-defined differentiation protocol was used to induce mesoderm formation and generate functional vascular cells including smooth muscle cells (SMCs) and endothelial cells (ECs) from human induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Reversal of ischemia is mediated by neo-angiogenesis requiring endothelial cell (EC) and pericyte interactions to form stable microvascular networks. We describe an unrecognized role for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in potentiating neo-angiogenesis and vessel stabilization. We show that the endothelium is a major source of TRAIL in the healthy circulation compromised in peripheral artery disease (PAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!