Unlabelled: The human blastocyst is key to understanding the aetiology of constitutional chromosome abnormalities in our species.
Objectives: To investigate the range and incidence of chromosome abnormalities in a large series of human blastocysts, using classic cytogenetic techniques.
Methods: Using thymidine, cell division is synchronized in spare five-to-eight-day-old human blastocysts generated by IVF. A simple acetic acid disaggregation step produces discrete metaphases for G-band analysis. Subsequent FISH analysis of both metaphase and interphase nuclei allows further exploration of an abnormality detected by G-banding, including the investigation of any mosaicism.
Results: A total of 438 blastocysts have been prepared. Where analysis was possible, 3% appeared polyploid (mainly tetraploid), 29% were diploid : tetraploid mosaics and 68% were uniformly diploid. Abnormalities observed include triploidy, trisomy 16, trisomy 2, trisomy for unidentifiable D-group chromosome, mosaic trisomy 3, and mosaic trisomy 3 and trisomy 7.
Conclusion: Comparison of results with existing data from both first trimester pregnancies and cleavage stage embryos suggests significant loss of haploid and monosomic embryos, as well as loss of some trisomies, prior to the blastocyst stage. It appears that the general range and incidence of most main groups of constitutional abnormalities observed in the first trimester (including mosaic forms) are in place by the blastocyst stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pd.502 | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Reproductive Biology Laboratory, Amsterdam University Medical Center Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
Placentation disorders, including severe preeclampsia and fetal growth restriction, have their origins in early pregnancy, whereas symptoms typically present later on. To investigate the pathogenesis of these diseases, there is a need for a reliable in vitro model system of early placenta development with known pregnancy outcomes. Therefore, we optimized the generation of human induced trophoblast stem cells (iTSCs) from term umbilical cord, enabling non-invasive collection of patient-derived material immediately after birth.
View Article and Find Full Text PDFPLoS One
January 2025
Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.
View Article and Find Full Text PDFCells
January 2025
Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.
View Article and Find Full Text PDFMol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!