Objective: To investigate whether liver regeneration is an angiogenesis-associated phenomenon.

Summary Background Data: Angiogenesis is predominantly known for its pivotal role in tumor growth. However, angiogenesis could also play a role in physiologic processes involving tissue repair, such as liver regeneration.

Methods: Mice subjected to 70% partial hepatectomy were treated with human angiostatin (100 mg/kg body weight). Regeneration-induced hepatic angiogenesis was determined by assessing intrahepatic microvascular density using CD31 staining of frozen liver sections. Liver regeneration was evaluated by assessing wet liver weights and BrdU incorporation in DNA at regular intervals after partial hepatectomy. Possible direct effects of angiostatin on hepatocytes were studied by assessment of liver enzymes (ASAT, ALAT, bilirubin, lactate dehydrogenase), MTT assay (cytotoxicity), aminophenol production (metabolic function), and TUNEL (apoptosis).

Results: In a regenerating liver, microvascular density increased by 38%. Angiostatin significantly inhibited this response by 60%. In addition, angiostatin inhibited liver regeneration by 50.4% and 24.9% on postoperative days 7 and 14, respectively. In control mice liver weights regained normalcy in 8 days, whereas those in angiostatin-treated mice normalized after 21 days. In angiostatin-treated mice, the maximal BrdU incorporation was decreased and delayed. Direct adverse effects of angiostatin on cultured and in vivo hepatocytes were not observed. Angiostatin neither induced necrosis on hematoxylin and eosin staining nor affected serum levels of liver enzymes.

Conclusions: Liver regeneration is accompanied by intrahepatic angiogenesis. Antiangiogenic treatment using angiostatin inhibits both phenomena. The authors conclude that liver regeneration is, at least in part, an angiogenesis-dependent phenomenon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422636PMC
http://dx.doi.org/10.1097/00000658-200212000-00002DOI Listing

Publication Analysis

Top Keywords

liver regeneration
24
liver
13
partial hepatectomy
8
microvascular density
8
liver weights
8
brdu incorporation
8
effects angiostatin
8
angiostatin inhibited
8
days angiostatin-treated
8
angiostatin-treated mice
8

Similar Publications

Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E.

View Article and Find Full Text PDF

Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes.

View Article and Find Full Text PDF

Cirrhosis is a major cause of morbidity and mortality; however, there are no approved therapies except orthotopic liver transplantation. Preclinical studies showed that bone-marrow-derived macrophage injections reduce inflammation, resolve fibrosis and stimulate liver regeneration. In a multicenter, open-label, parallel-group, phase 2 randomized controlled trial ( ISRCTN10368050 ) in n = 51 adult patients with compensated cirrhosis and Model for End-Stage Liver Disease (MELD) score ≥10 and ≤17, we evaluated the efficacy of autologous monocyte-derived macrophage therapy (n = 27) compared to standard medical care (n = 24).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!