The 2.2 A resolution structure of thermolysin (TLN) crystallized in the presence of potassium thiocyanate.

Acta Crystallogr D Biol Crystallogr

Laboratoire de Cristallographie et RMN Biologiques (UMR-8015, CNRS), Université Paris V, Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75270 Paris CEDEX 06, France.

Published: December 2002

A new crystallization protocol for thermolysin (EC 3.4.24.27) from Bacillus thermoproteolyticus is presented. After dissolving the protein in the presence of KSCN, which avoids the use of DMSO and CsCl, crystals were obtained following the salting-in method. Crystal cell parameters are isomorphous with those previously reported from DMSO/CsCl mixtures. The new SCN(-) crystal structure has been analyzed. It shows the presence of one thiocyanate ion in the catalytic site and several rearrangements in the S(1) and S(2) subsites. These results are in agreement with the measurements of Inouye et al. [(1998), J. Biochem. (Tokyo), 123, 847-852], who observed in solution that the solubility of TLN, which is particularly poor in low ionic strength solutions, increases dramatically in the presence of several neutral salts. The results reported here suggest possible explanations for the solubility increase and for the inhibitory effects of high SCN(-) concentrations on thermolysin activity.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0907444902015457DOI Listing

Publication Analysis

Top Keywords

resolution structure
4
structure thermolysin
4
thermolysin tln
4
tln crystallized
4
presence
4
crystallized presence
4
presence potassium
4
potassium thiocyanate
4
thiocyanate crystallization
4
crystallization protocol
4

Similar Publications

Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach.

Environ Sci Technol

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.

View Article and Find Full Text PDF

Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity.

View Article and Find Full Text PDF

Microneedles as transdermal drug delivery system for enhancing skin disease treatment.

Acta Pharm Sin B

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.

View Article and Find Full Text PDF

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

Recent Advances on Characterization Techniques for the Composition-Structure-Property Relationships of Solid Electrolyte Interphase.

Small Methods

January 2025

College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China.

The Solid Electrolyte Interphase (SEI) is a nanoscale thickness passivation layer that forms as a product of electrolyte decomposition through a combination of chemical and electrochemical reactions in the cell and evolves over time with charge/discharge cycling. The formation and stability of SEI directly determine the fundamental properties of the battery such as first coulombic efficiency (FCE), energy/power density, storage life, cycle life, and safety. The dynamic nature of SEI along with the presence of spatially inhomogeneous organic and inorganic components in SEI encompassing crystalline, amorphous, and polymeric nature distributed across the electrolyte to the electrolyte-electrode interface, highlights the need for advanced in situ/operando techniques to understand the formation and structure of these materials in creating a stable interface in real-world operating conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!