Plasmepsin II is one of the four catalytically active plasmepsins found in the food vacuole of Plasmodium falciparum. These enzymes initiate hemoglobin degradation by cleavage at the alpha-chain between Phe33 and Leu34. The crystal structures of Ser205 mutant plasmepsin II from P. falciparum in complex with two inhibitors have been refined at a resolution of 1.8 A in the space group I222 and to R factors of 19.9 and 19.5%. Each crystal contains one monomer in the asymmetric unit. Both inhibitors have a Phe-Leu core and incorporate tetrahedral transition-state mimetic hydroxypropylamine. The inhibitor rs367 possesses a 2,6-dimethylphenyloxyacetyl group at the P2 position and 3-aminobenzamide at the P2' position, while rs370 has the same P2 group but 4-aminobenzamide in the P2' position. These complexes reveal key conserved hydrogen bonds between the inhibitor and the binding-cavity residues, notably with the flap residues Val78 and Ser79, the catalytic dyad Asp34 and Asp214 and the residues Ser218 and Gly36 that are in proximity to the catalytic dyad. The structures also show unexpected conformational variability of the binding cavity of plasmepsin II and may reflect the mode of binding of the hemoglobin alpha-chain for cleavage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0907444902014695 | DOI Listing |
J Biomol Struct Dyn
March 2024
Department of Biochemistry, Bangalore University, Bangalore, Karnataka, India.
AkT1, significantly impacts many tumours cell functions, like transcription, apoptosis, glucose metabolism, cell proliferation, and cell migration. For tumours to develop and spread, aberrant activation of AKT1 is essential. Therefore, a major focus of molecularly targeted PCa treatment is AKT1.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
November 2023
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Esterases/lipases from the GDSL family have potential applications in the hydrolysis and synthesis of important esters of pharmaceutical, food, and biotechnical interests. However, the structural and functional understanding of GDSL enzymes is still limited. Here, we report the crystal structure of the GDSL family esterase EstL5 complexed with PMSF at 2.
View Article and Find Full Text PDFMol Cell
January 2022
Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada. Electronic address:
Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1.
View Article and Find Full Text PDFJ Phys Chem B
December 2018
Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy.
The fluorescence of Green Fluorescent Protein (wtGFP) and variants has been exploited in distinct applications in cellular and analytical biology. GFPs emission depends on the population of the protonated (A-state) and deprotonated (B-state) forms of the chromophore. Whereas wtGFP is pH-independent, mutants in which Ser65 is replaced by either threonine or alanine (as in GFPmut2) are pH-dependent, with a p K around 6.
View Article and Find Full Text PDFJ Mol Recognit
July 2018
Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, India.
The study considers the Suppressor of cytokine signaling 1 (SOCS1) protein as a novel Type 2 diabetes mellitus (T2DM) drug target. T2DM in human beings is also triggered by the over expression of SOCS proteins. The SOCS1 acts as a ubiquitin ligase (E3), degrades Insulin Receptor Substrate 1 and 2 (IRS1 and IRS2) proteins, and causes insulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!