Comparison of automated and nonautomated systems for identification of Burkholderia pseudomallei.

J Clin Microbiol

Central Queensland Pathology Laboratory, Mackay, Queensland, Australia.

Published: December 2002

The identification of Burkholderia pseudomallei, the causative agent of melioidosis, is usually not difficult in laboratories in areas where it is endemic. With the increase in international travel and the threat of bioterrorism, it has become more likely that laboratories in areas where it is not endemic could encounter this organism. The increase in the use of and dependence upon automated identification systems makes accurate identification of uncommonly encountered organisms such as B. pseudomallei critically important. This study compares the manual API 20NE and 20E identification systems with the automated Vitek 1 and 2 systems. A total of 103 B. pseudomallei isolates were tested and correctly identified in 98%, 99%, 99%, and 19% of cases, respectively. The failure of the Vitek 2 to correctly identify B. pseudomallei was largely due to differences in the biochemical reactions achieved compared to expected values in the database. It is suggested that this deficiency in the Vitek 2 may be due to the large number of uncertain results reported for these isolates. These results reduce the discriminating ability of the instrument to distinguish between uncommonly encountered isolates such as those of B. pseudomallei.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154629PMC
http://dx.doi.org/10.1128/JCM.40.12.4625-4627.2002DOI Listing

Publication Analysis

Top Keywords

identification burkholderia
8
burkholderia pseudomallei
8
laboratories areas
8
areas endemic
8
identification systems
8
uncommonly encountered
8
pseudomallei
6
identification
5
comparison automated
4
automated nonautomated
4

Similar Publications

Endophytes are bacteria that inhabit host plants for most of their life cycle without causing harm. In the study, 15 endophytic bacteria were isolated from 30 forage Sorghum plants and assessed for various plant growth-promoting (PGP) traits, such as phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, ammonia production, siderophore production, gibberellic acid production, Indole-3-acetic acid (IAA) production, and zinc solubilization. One isolate, JJG_Zn, demonstrated multiple PGP activities and was identified as Enterobacter sp.

View Article and Find Full Text PDF

A novel ready-to-use loop-mediated isothermal amplification (LAMP) method for detection of Burkholderia mallei and B. pseudomallei.

BMC Microbiol

January 2025

Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.

Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.

View Article and Find Full Text PDF

The microbiota of cork and yellow stain as a model for a new route for the synthesis of chlorophenols and chloroanisoles from the microbial degradation of suberin and/or lignin.

Microbiome

January 2025

Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.

Article Synopsis
  • Cork is primarily used for wine bottle stoppers, but it can contain 2,4,6-trichloroanisole, which causes a musty odor that negatively affects wine quality and leads to financial losses.
  • The presence of yellow stain in cork indicates a degradation linked to higher microbial populations, particularly filamentous fungi that break down lignin, and this microbiota contributes to the formation of chlorophenols and chloroanisoles.
  • Research identified specific fungal and bacterial species associated with yellow stain and demonstrated that certain strains can convert p-hydroxybenzoate into phenol, which can then be chlorinated, potentially leading to the development of 2,4,6-trichlorophenol.
View Article and Find Full Text PDF

Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.

View Article and Find Full Text PDF

Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!