The identification of Burkholderia pseudomallei, the causative agent of melioidosis, is usually not difficult in laboratories in areas where it is endemic. With the increase in international travel and the threat of bioterrorism, it has become more likely that laboratories in areas where it is not endemic could encounter this organism. The increase in the use of and dependence upon automated identification systems makes accurate identification of uncommonly encountered organisms such as B. pseudomallei critically important. This study compares the manual API 20NE and 20E identification systems with the automated Vitek 1 and 2 systems. A total of 103 B. pseudomallei isolates were tested and correctly identified in 98%, 99%, 99%, and 19% of cases, respectively. The failure of the Vitek 2 to correctly identify B. pseudomallei was largely due to differences in the biochemical reactions achieved compared to expected values in the database. It is suggested that this deficiency in the Vitek 2 may be due to the large number of uncertain results reported for these isolates. These results reduce the discriminating ability of the instrument to distinguish between uncommonly encountered isolates such as those of B. pseudomallei.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154629 | PMC |
http://dx.doi.org/10.1128/JCM.40.12.4625-4627.2002 | DOI Listing |
Curr Microbiol
January 2025
School of Organic Farming, Punjab Agricultural University, Ludhiana, 141004, India.
Endophytes are bacteria that inhabit host plants for most of their life cycle without causing harm. In the study, 15 endophytic bacteria were isolated from 30 forage Sorghum plants and assessed for various plant growth-promoting (PGP) traits, such as phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, ammonia production, siderophore production, gibberellic acid production, Indole-3-acetic acid (IAA) production, and zinc solubilization. One isolate, JJG_Zn, demonstrated multiple PGP activities and was identified as Enterobacter sp.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.
Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
PLoS Negl Trop Dis
January 2025
Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines.
Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.
View Article and Find Full Text PDFElectrophoresis
January 2025
National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic.
Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!