Epithelial cells of the gastrointestinal tract are challenged by exposure to many potentially toxic agents including the well-known food contaminant benzo[a]pyrene (B[a]P). They are equipped with a variety of Phase 1- and Phase 2-enzymes that are able to metabolize B[a]P. Furthermore, transmembranous ABC-transport proteins are expressed at the apical pole of these cells. The aim of this study was to investigate whether [14C]B[a]P or products of the metabolism are transported by intestinal cells back into the gut lumen. The intestinal Caco-2 cell line was used as a metabolism and transport model. Experiments with Caco-2 monolayers in the Transwell-system revealed that radiolabeled substance is transported towards the apical (luminal) region. This transport was characterized as active and increased after induction of cytochromes P450 1A1 and 1B1 by beta-naphthoflavone. On the other hand, transport was decreased with the concomitant inhibition of Phase 1-metabolism. TLC-analysis revealed that the primary metabolites of B[a]P found in the supernatant were very polar; other metabolites of less polarity could only be detected in trace amounts. These results indicate that B[a]P is metabolized by Caco-2 cells to highly polar metabolites resulting from biphasic metabolism and that these polar metabolites are subject to an apically directed transport. Chemical inhibition studies showed that P-glycoprotein and MRP1 or 2 were not involved in this polarized B[a]P-metabolite secretion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-2797(02)00076-5DOI Listing

Publication Analysis

Top Keywords

polar metabolites
12
intestinal caco-2
8
caco-2 cells
8
cells
5
transport
5
metabolites
5
human intestinal
4
caco-2
4
cells display
4
display active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!