Protein that makes sense in the Argentine ant.

Naturwissenschaften

Honorary Maeda-Duffey Laboratory, Department of Entomology, University of California, Davis, CA 95616, USA.

Published: November 2002

With a protein-based approach, we have identified and cloned the cDNA encoding a chemosensory protein (LhumCSP) in the Argentine ant, Linepithema humile. The open reading frame of the cloned cDNA encoded a signal peptide (20 residues), and a mature protein (pI 4.62) of 106 amino acid residues. The calculated molecular mass (12,453 Da) was in agreement with the molecular mass measured by on-line chromatography-electrospray ionization mass spectrometry (12,448 Da), given the formation of two disulfide bridges. LhumCSP shared sequence similarity with various CSPs, particularly those identified and/or cloned from moth species. Also, LhumCSP showed the hallmark of the chemosensory proteins, i.e., four well conserved cysteine residues. The antennal protein was not detected in non-olfactory tissues (leg and thorax) contrary to a putative pheromone-binding protein isolated from the thorax of the red imported fire ant, Solenopsis invicta. In addition, these findings suggest that, as in Orthopterans and Phasmids, the protein that makes sense in the Argentine ant is not an odorant-binding protein, but rather a chemosensory protein.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00114-002-0368-1DOI Listing

Publication Analysis

Top Keywords

argentine ant
12
protein
8
protein sense
8
sense argentine
8
cloned cdna
8
chemosensory protein
8
molecular mass
8
ant
4
ant protein-based
4
protein-based approach
4

Similar Publications

Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), is a pest in southern California citrus orchards because it protects honeydew-producing hemipteran pests from natural enemies. A major impediment to controlling L. humile is estimating ant densities in orchards.

View Article and Find Full Text PDF

Invasion Risk of Established and Horizon Non-Native Ants in the Mediterranean: A Screening for Italy.

Insects

November 2024

Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, University of Lodz, 90-237 Lodz, Poland.

Over five hundred non-native ant species have spread worldwide, including many that have severe effects on biodiversity, are serious economic pests, or threaten human health and agriculture. The number of species in the Mediterranean is steadily increasing, with Italy being a prominent example. We provide risk screenings for non-native ant species in Italy using a Terrestrial Species Invasiveness Screening Kit using current climate conditions and future predictions.

View Article and Find Full Text PDF

Background: Isoxazolines inhibit γ-aminobutyric acid chloride channels in insects and acarids by binding to postsynaptic receptors. This prevents chloride influx, leading to depolarization/hyperexcitation, paralysis, and death. Here, we evaluated the potential utility of a novel isoxazoline, isocycloseram, against several urban insect pests.

View Article and Find Full Text PDF

In two laboratory trials, natural products, including freshly picked leaves from spearmint, rosemary, and tansy plants, a water extract from soybean plants, peels from a common cucumber, and 1% peppermint oil in hexane, were placed in a moist harborage preferred by Argentine ants, (Mayr), and the number of ants entering the harborage after two and four hours was counted. None of the recommended home remedies (tansy, cucumber, or soybean extract) deterred ants from an attractive, moist harborage in either trial, even when the quantity of these treatments was increased 4- to 10-fold. Freshly picked leaves from rosemary and spearmint plants deterred ants from harboring, and the 1% peppermint oil was the most deterrent of all treatments.

View Article and Find Full Text PDF

The urban island: climatic suitability of Linepithema humile (Hymenoptera: Formicidae) and the role of cities in the invasion of the Western Palearctic.

Integr Zool

September 2024

Evolution and Conservation Biology Research Group, Biodiversity, Ecology and Evolution Department, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.

Urban environments often present environmental conditions that facilitate the introduction and establishment of nonnative and invasive species. These can expand their range into areas with unfavorable climates by taking advantage of the ecological and climatic homogenization of cities, bypassing the ecological barriers presented by the surrounding environment. One way to monitor the expansion of these species is using potential distribution models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!