Propofol is a short-acting general intravenous anesthetic characterized by a wide interindividual variability in the response after the same dose. Its binding to serum proteins exceeds 98%, so small changes in protein concentrations can be amplified in the unbound fraction of the drug and hence possibly in the effect. It is then likely that part of the variability in the response could be attributed to differences in protein levels among individuals and particularly among those with pathologies such as diabetes. The aim of this study was to establish predictive regression models in a diabetes mellitus (DM) population between unbound:bound propofol ratios and demographic and biochemical indices. Unbound:bound propofol ratios can be routinely obtained in the clinic as opposed to the free fraction of the drug. In DM patients (30 women and 37 men aged between 17 and 78 y) with mellitus type 1 (n = 37) and type 2 (n = 30) diabetes, the authors measured the lipoproteins (HDL, LDL, and VLDL), cholesterol, triglycerides, albumin, alpha1-acid glycoprotein (AAG), free fatty acids (FFA), glycosylated hemoglobin, and the unbound fraction (Fu) and the bound/free ratio (B/F) of propofol. A linearized regression model between the above variables--as well as age, sex, and type of diabetes--and Fu was then developed. Patients had blood drawn and sera separated by centrifugation and spiked with propofol to a concentration of 10 microg/mL. The Fu was determined via ultrafiltration. Multiple linear regression analysis was used to identify significant predictor variables of Fu in this population and two models were originated: one with lipoprotein serum concentrations as explanatory variables (Model A) and another that depended on cholesterol and triglycerides (Model B). Both models presented high correlation coefficients (r2 = 0.71 and 0.68, respectively; P < 0.0001), and each was used to predict Fu in an independent group of 15 DM patients of similar characteristics and biochemical indices as the model development group. Bias and precision were for Model A, 0.9% and 7.8%, and for Model B, 3.0% and 8.7%, respectively. Both models were compared with each other and to a naive predictor (the mean) and each was better than the naive model in predicting the unbound fraction of propofol. Model A and model B could be used in estimating Fu of propofol in DM patients based on the more routine clinical measures of lipoprotein serum concentrations or cholesterol and triglyceride levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00007691-200212000-00002 | DOI Listing |
Pharmaceutics
December 2024
Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Clinical Diagnostics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands. Electronic address:
Introduction: High-dose systemic prednisolone is the cornerstone treatment of many autoimmune- and inflammatory diseases. Since prednisolone shows non-linear protein binding at higher serum concentrations, quantification of the unbound prednisolone concentration is important to understand prednisolone pharmacokinetics. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to quantify protein-unbound prednisolone in serum.
View Article and Find Full Text PDFArtif Organs
December 2024
Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA.
Background: Liver disease is a growing burden. Transplant organs are scarce. Extracorporeal liver support systems (ELSS) are a bridge to transplantation for eligible patients.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Electronic address:
Physiological and artificial solubilizing agents usually enhance apparent solubility of poorly soluble drugs, and in many cases also oral drug exposure. However, exposure may decrease in cases where micellization reduces the molecularly dissolved drug fraction, overriding the solubility advantage. While this information is critical to accurately anticipate the effect of drug micellization on oral absorption, the experimental determination of molecularly dissolved drug concentrations is complex and time consuming.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
December 2024
Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Objective: The objective of this study was to determine the apparent intrinsic clearance (Cl) and fraction unbound in human liver microsomes (f) of 86 marketed central nervous system (CNS) drugs and to predict the in vivo hepatic blood clearance (CL).
Methods: Cl in human liver microsomes (HLM) was determined by substrate depletion, and f was determined by equilibrium dialysis. The relationship between lipophilicity (logP) and unbound intrinsic clearance (Cl) was explored using the Biopharmaceutical Drug Disposition Classification System (BDDCS) and Extended Clearance Classification System (ECCS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!