The gating properties of channels responsible for the generation of persistent Na(+) current (I(NaP)) in entorhinal cortex layer II principal neurons were investigated by performing cell-attached, patch-clamp experiments in acutely isolated cells. Voltage-gated Na(+)-channel activity was routinely elicited by applying 500-ms depolarizing test pulses positive to -60 mV from a holding potential of -100 mV. The channel activity underlying I(NaP) consisted of prolonged and frequently delayed bursts during which repetitive openings were separated by short closings. The mean duration of openings within bursts was strongly voltage dependent, and increased by e times per every approximately 12 mV of depolarization. On the other hand, intraburst closed times showed no major voltage dependence. The mean duration of burst events was also relatively voltage insensitive. The analysis of burst-duration frequency distribution returned two major, relatively voltage-independent time constants of approximately 28 and approximately 190 ms. The probability of burst openings to occur also appeared largely voltage independent. Because of the above "persistent" Na(+)-channel properties, the voltage dependence of the conductance underlying whole-cell I(NaP) turned out to be largely the consequence of the pronounced voltage dependence of intraburst open times. On the other hand, some kinetic properties of the macroscopic I(NaP), and in particular the fast and intermediate I(NaP)-decay components observed during step depolarizations, were found to largely reflect mean burst duration of the underlying channel openings. A further I(NaP) decay process, namely slow inactivation, was paralleled instead by a progressive increase of interburst closed times during the application of long-lasting (i.e., 20 s) depolarizing pulses. In addition, long-lasting depolarizations also promoted a channel gating modality characterized by shorter burst durations than normally seen using 500-ms test pulses, with a predominant burst-duration time constant of approximately 5-6 ms. The above data, therefore, provide a detailed picture of the single-channel bases of I(NaP) voltage-dependent and kinetic properties in entorhinal cortex layer II neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229567 | PMC |
http://dx.doi.org/10.1085/jgp.20028676 | DOI Listing |
Georgian Med News
November 2024
2Institute of Botany after A. Takhtajyan NAS RA, Yerevan, Armenia.
Parkinson disease (PD) is a common neurodegenerative condition. It affects the central nervous system, and it impairs cognitive processes, motor skills and other functions. The aim of this study was to determine the synaptic processes in medial Entorhinal cortex (mENT) under High frequency stimulation of Basolateral Amygdala on the model of Parkinson's disease under the influence of Hydrocortisone.
View Article and Find Full Text PDFCell Rep
January 2025
Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
Anxiety, a mental state in healthy individuals, is characterized by apprehension of potential future threats. Though the neurobiological basis of anxiety has been investigated widely in the clinical populations, the underly mechanism of neuroanatomical correlates with anxiety level in healthy young adults is still unclear. In this study, 1080 young adults were enrolled from the Human Connectome Project Young Adult dataset, and machine learning-based elastic net regression models with cross validation, together with linear mix effects (LME) models were adopted to investigate whether the neuroanatomical profiles of structural magnetic resonance imaging indicators associated with anxiety level in healthy young adults.
View Article and Find Full Text PDFUnlabelled: The integration of olfactory and spatial information is critical for guiding animal behavior. The lateral entorhinal cortex (LEC) is reciprocally interconnected with cortical areas for olfaction and the hippocampus and thus ideally positioned to encode odor-place associations. Here, we used mini-endoscopes to record neural activity in the mouse piriform cortex (PCx) and LEC.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Tlaxcala, Mexico. Electronic address:
Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!