Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is now widely accepted that increased total plasma homocysteine (tHcy) is a risk factor for cardiovascular disease. Hyperhomocysteinemia can be caused by impaired enzyme function as a result of genetic mutation or vitamin B (B(2), B(6), B(9), B(12)) deficiency. A lot of methods are now available for tHcy determination. High-pressure liquid chromatography (HPLC) with fluorescence detection are at present the most widely used methods but immunoassays, easier to use, begin to supplant in-house laboratory methods. In order to help with the choice of a main relevant homocysteine analytical method, the characteristics, performances and limits of the main current methods are reviewed. One major drawback among all these available methods is the transferability which is not clearly established to date. The impact of both inter-method and inter-laboratory variations on the interpretation of the tHcy results are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-0232(02)00497-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!