A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ischaemic penumbra: highlights. | LitMetric

AI Article Synopsis

  • The ischaemic penumbra, first identified in the late 1970s, refers to a zone around a stroke-affected area that can recover if blood flow is restored quickly; it's a dynamic region that changes over time.
  • Neuroimaging techniques like SPET, PET, DWI, and PWI provide crucial insights into blood flow and metabolic changes in the brain, aiding in the assessment of this penumbral area.
  • Advancements in treatment for acute strokes depend on effectively using these imaging methods to identify candidates for therapies that can either restore blood flow or protect brain cells, with a focus on "time windows" for treatment effectiveness.

Article Abstract

The ischaemic penumbra was described for the first time in the late 1970s as a ring of hypoperfused zone surrounding the region of complete infarction. The penumbral zone is a functionally silent tissue which is able to regain its function if promptly reperfused. This implies that the ischaemic penumbra is not a static but a "dynamic" and "time-dependent" concept. In this paper we describe the role of neuroimmaging tecniques such as single photon emission tomography (SPET), positron emission tomography (PET), and diffusion-weighted and perfusion-weighted magnetic resonance imaging (DWI and PWI) in the study of ischaemic penumbra. These functional imaging techniques have the advantage of giving "in vivo" quantitative estimate of cerebral blood flow (CBF) as well as information on how the ischaemic tissue metabolic changes develop. It follows that, as therapeutic options for treating acute stroke evolve, neuroimaging strategies are assuming an increasingly important role in the initial evaluation and management of the acute ischaemic patient. In this regard, a wide range of therapeutic approaches have been investigated for either ameliorating the perfusion, or interfering with the pathobiochemical cascade leading to ischaemic neuronal damage, or improving endogenous neuroprotection pathways. The "time windows" required for these treatments to be effective varies being rather short for reperfusion and longer for neuroprotection. Salvaging more penumbra would enhance recovery and thereby allow the most appropriate candidate for therapeutic trials to be selected.

Download full-text PDF

Source
http://dx.doi.org/10.1081/ceh-120015328DOI Listing

Publication Analysis

Top Keywords

ischaemic penumbra
16
emission tomography
8
ischaemic
7
penumbra highlights
4
highlights ischaemic
4
penumbra
4
penumbra described
4
described time
4
time late
4
late 1970s
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!