Several epidemiologic studies have reported that cyclooxygenase (COX) inhibitors prevent/delay the onset of Alzheimer's disease (AD). Recent experimental studies suggest that these compounds can also diminish amyloid-beta (Abeta) neuropathology in rodent models of AD. To explore the relationship of COX expression to Abeta neuropathology, we crossed mice expressing both mutant amyloid precursor protein [K670N/M671L (APP(swe)] and mutant PS1 (A246E) with mice expressing human COX-2 selectively in neurons. We show here that human COX-2 expression in APP(swe)/PS1/COX-2 mice induces potentiation of brain parenchymal amyloid plaque formation and a greater than twofold increase in prostaglandin E2 production, at 24 months of age. This increased amyloid plaque formation coincided with a preferential elevation of Abeta1-40 and Abeta1-42 with no change in total amyloid precursor protein (APP) expression/content in the brain. Collectively these data suggest that COX-2 influences APP processing and promotes amyloidosis in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977525 | PMC |
http://dx.doi.org/10.3727/000000002783992352 | DOI Listing |
J Hazard Mater
January 2025
The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China. Electronic address:
Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline.
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021].
View Article and Find Full Text PDFBiomolecules
December 2024
Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 157 01 Athens, Greece.
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by extracellular amyloid plaques, predominantly consisting of amyloid- (A) peptides. The oligomeric form of A is acknowledged as the most neurotoxic, propelling the pathological progression of AD. Interestingly, besides A, other proteins are co-localized within amyloid plaques.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.
The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!