Abasic sites in HeLa cell DNA were increased in frequency by exposing the cells to lucanthone. Cell growth in the presence of lucanthone caused progressive accumulation of abasic sites and loss of cellular DNA. After 2 hr in 8 microM lucanthone, the abundance of abasic sites was 2.4 fold greater than the background of 9.9 +/- 2.0 SE abasic sites/10(6) nucleotides; 80 microM lucanthone in the growth medium increased the level 12.6 +/- 2.5 SE fold and decreased the DNA content in HeLa cells to one-half of the value obtained in untreated cells. The frequency of abasic sites in cellular DNA was determined by the aldehyde reactive probe method, with reference to abasic sites created in plasmid pBR322. The ability of lucanthone to inhibit the normal repair of abasic sites might reflect inhibition of apurinic/apyrimidinic endonuclease (HAP1) by the drug, thereby preventing an early step in the base excision repair pathway. Unrepaired abasic sites prevalent after ionizing radiation are cytotoxic lesions that promote DNA strand breaks. These results suggest a rationale for the joint lethal effects of lucanthone and ionizing radiation in cells and the accelerated tumor regression observed in cancer patients who received the combined therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/cnv-120005914 | DOI Listing |
BMB Rep
December 2024
Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
Base excision repair (BER) is an essential cellular mechanism that repairs small, non-helix-distorting base lesions in DNA, resulting from oxidative damage, alkylation, deamination, or hydrolysis. This review highlights recent advances in understanding the molecular mechanisms of BER enzymes through single-molecule studies. We discuss the roles of DNA glycosylases in lesion recognition and excision, with a focus on facilitated diffusion mechanisms such as sliding and hopping that enable efficient genome scanning.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
bioRxiv
November 2024
Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
ATR is the master safeguard of genomic integrity during DNA replication. Acute inhibition of ATR with ATR inhibitor (ATRi) triggers a surge in origin firing, leading to increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe.
View Article and Find Full Text PDFNat Commun
November 2024
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, Basel, Switzerland.
Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair.
View Article and Find Full Text PDFCancer Control
November 2024
Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan.
Purpose: This prospective study aimed to investigate estrogen-induced carcinogenesis by assessing the background levels of abasic sites (apurinic/apyrimidinic sites, AP sites) in Taiwanese breast cancer patients following 5 years of postoperative treatment without recurrence (5-year survivors) (n = 70). The study also sought to compare the extent of these DNA lesions with those found in healthy controls and in breast cancer patients prior to treatment.
Methods: Abasic sites were measured using an aldehyde reactive probe and quantified as the total number of abasic sites per total nucleotides.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!