Abasic sites in DNA of HeLa cells induced by lucanthone.

Cancer Invest

Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210 Street, Bronx, NY 10467, USA.

Published: December 2002

Abasic sites in HeLa cell DNA were increased in frequency by exposing the cells to lucanthone. Cell growth in the presence of lucanthone caused progressive accumulation of abasic sites and loss of cellular DNA. After 2 hr in 8 microM lucanthone, the abundance of abasic sites was 2.4 fold greater than the background of 9.9 +/- 2.0 SE abasic sites/10(6) nucleotides; 80 microM lucanthone in the growth medium increased the level 12.6 +/- 2.5 SE fold and decreased the DNA content in HeLa cells to one-half of the value obtained in untreated cells. The frequency of abasic sites in cellular DNA was determined by the aldehyde reactive probe method, with reference to abasic sites created in plasmid pBR322. The ability of lucanthone to inhibit the normal repair of abasic sites might reflect inhibition of apurinic/apyrimidinic endonuclease (HAP1) by the drug, thereby preventing an early step in the base excision repair pathway. Unrepaired abasic sites prevalent after ionizing radiation are cytotoxic lesions that promote DNA strand breaks. These results suggest a rationale for the joint lethal effects of lucanthone and ionizing radiation in cells and the accelerated tumor regression observed in cancer patients who received the combined therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1081/cnv-120005914DOI Listing

Publication Analysis

Top Keywords

abasic sites
32
abasic
9
hela cells
8
cellular dna
8
microm lucanthone
8
ionizing radiation
8
lucanthone
7
sites
7
dna
6
cells
5

Similar Publications

Base excision repair (BER) is an essential cellular mechanism that repairs small, non-helix-distorting base lesions in DNA, resulting from oxidative damage, alkylation, deamination, or hydrolysis. This review highlights recent advances in understanding the molecular mechanisms of BER enzymes through single-molecule studies. We discuss the roles of DNA glycosylases in lesion recognition and excision, with a focus on facilitated diffusion mechanisms such as sliding and hopping that enable efficient genome scanning.

View Article and Find Full Text PDF

Octahedral Iron in Catalytic Sites of Endonuclease IV from and .

Biochemistry

January 2025

Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.

Article Synopsis
  • - During infections, reactive oxygen species can cause DNA damage, necessitating a repair process that involves the enzyme endonuclease IV (Nfo), which removes defective DNA bases through hydrolysis.
  • - The crystal structure of Nfo from a Gram-positive organism shows that it contains two iron ions and one zinc ion, with unique water molecule coordination that may play a role in how the enzyme distinguishes between these metals.
  • - Nfo exhibits slow product release and optimal activity at high salt concentrations, which ties into its function and potentially significant role in organisms that thrive in salty environments.
View Article and Find Full Text PDF

ATR is the master safeguard of genomic integrity during DNA replication. Acute inhibition of ATR with ATR inhibitor (ATRi) triggers a surge in origin firing, leading to increased levels of single-stranded DNA (ssDNA) that rapidly deplete all available RPA. This leaves ssDNA unprotected and susceptible to breakage, a phenomenon known as replication catastrophe.

View Article and Find Full Text PDF

Combinational therapies provoking cell death are of major interest in oncology. Combining TORC2 kinase inhibition with the radiomimetic drug Zeocin results in a rapid accumulation of double-strand breaks (DSB) in the budding yeast genome. This lethal Yeast Chromosome Shattering (YCS) requires conserved enzymes of base excision repair.

View Article and Find Full Text PDF

Purpose: This prospective study aimed to investigate estrogen-induced carcinogenesis by assessing the background levels of abasic sites (apurinic/apyrimidinic sites, AP sites) in Taiwanese breast cancer patients following 5 years of postoperative treatment without recurrence (5-year survivors) (n = 70). The study also sought to compare the extent of these DNA lesions with those found in healthy controls and in breast cancer patients prior to treatment.

Methods: Abasic sites were measured using an aldehyde reactive probe and quantified as the total number of abasic sites per total nucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!