Wolbachia interactions that determine Drosophila melanogaster survival.

Evolution

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.

Published: October 2002

We have recently described a mutualistic symbiosis in which Wolbachia bacteria were shown to improve the fitness of some Drosophila melanogaster stocks. Wolbachia did not extend longevity in all Drosophila genotypes, even though 16s rDNA sequences indicated that our Drosophila stocks were infected with the same Wolbachia strain. Here, we use reciprocal hybrid crosses between two Drosophila strains, one that lived longer with Wolbachia (Z53) and one that did not (Z2), to investigate the inheritance of the survival phenotype and its dependence on the host genotype, sex, and mating conditions. Wolbachia's positive effects were more apparent in hybrid flies than in parental flies, ruling out exclusive maternal inheritance or the dependence of the survival phenotype on Wolbachia strain differences. The Wolbachia survival effects were more apparent in single-sex cages, where courtship and mating were not permitted. In these cages, nearly all flies with Wolbachia lived longer than uninfected flies, even though strain Z2 showed no Wolbachia effect in mixed-sex mating cages. We used comparisons between single- and mixed-sex cages to estimate the cost of reproduction for both sexes. Our data suggest that Wolbachia infection may increase the inferred cost of reproduction, particularly in males. Wolbachia can even produce a positive survival effect almost as large as the negative survival effect associated with reproduction. We discuss the implications of our experiments for the study of insect symbioses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0014-3820.2002.tb00123.xDOI Listing

Publication Analysis

Top Keywords

wolbachia
11
drosophila melanogaster
8
wolbachia strain
8
lived longer
8
survival phenotype
8
effects apparent
8
cost reproduction
8
survival
6
drosophila
5
wolbachia interactions
4

Similar Publications

Background: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions.

Results: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region.

View Article and Find Full Text PDF

Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.

View Article and Find Full Text PDF

The future of control emphasizes the transition from traditional insecticides toward more sustainable and multisectoral integrated strategies, like using -carrying mosquitoes for population suppression or replacement. We reviewed the integration of the successful Mexican initiative, "Mosquitos Buenos", with the key challenges outlined in the PAHO guidelines for incorporating innovative approaches into vector control programs. These challenges include establishing essential infrastructure, training personnel, managing field operations, and fostering community support.

View Article and Find Full Text PDF

The protein encoded by the gene ( ) plays an essential role in early gametogenesis by complexing with the gene product of ( ) to promote germline stem cell daughter differentiation in males and females. Here, we compared the AlphaFold2 and AlphaFold Multimer predicted structures of Bam protein and the Bam:Bgcn protein complex between , where is necessary in gametogenesis to that in , where it is not. Despite significant sequence divergence, we find very little evidence of significant structural differences in high confidence regions of the structures across the four species.

View Article and Find Full Text PDF

The global issue of insecticide resistance among pests is a major concern. Ectropis grisescens Warren (Lepidoptera: Geometridae), is a highly destructive leaf-eating pest distributed in tea plantations throughout China and Japan, and has exhibited resistance to various insecticides. Recent studies suggest that insect symbionts play a role in influencing insecticide resistance, however, their specific involvement in E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!