Trade-offs among the abilities of organisms to respond to different environmental factors are often assumed to play a major role in the coexistence of species. There has been extensive theoretical study of the role of such trade-offs in ecological communities but it has proven difficult to study such trade-offs experimentally. Microorganisms are ideal model systems with which to experimentally study the causes and consequences of ecological trade-offs. In model communities of E. coli B and T-type bacteriophage, a trade-off in E. coli between resistance to bacteriophage and competitive ability is often observed. This trade-off can allow the coexistence of different ecological types of E. coli. The magnitude of this trade-off affects, in predictable ways, the structure, dynamics and response to environmental change of these communities. Genetic factors, environmental factors, and gene-by-environment interactions determine the magnitude of this trade-off. Environmental control of the magnitude of trade-offs represents one avenue by which environmental change can alter community properties such as invasability, stability and coexistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1020585711378 | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
Background: Heavy metal exposure is an emerging environmental risk factor linked to cardiovascular disease (CVD) through its effects on vascular ageing. However, the relationship between heavy metal exposure and vascular age have not been fully elucidated.
Methods: This cross-sectional study analyzed data from 3,772 participants in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016.
BMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.
Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!