Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

Nature

Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.

Published: November 2002

The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01172DOI Listing

Publication Analysis

Top Keywords

oceanic mantle
12
mantle lithosphere
12
ocean-island basalts
12
osmium isotope
12
mantle
9
recycled archaean
8
archaean oceanic
8
azores plume
8
isotope signature
8
evidence recycled
4

Similar Publications

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.

View Article and Find Full Text PDF

A tale of two planets: Disparate evolutionary models for Mars inferred from radiogenic isotope compositions of Martian meteorites.

Proc Natl Acad Sci U S A

January 2025

Cosmochemistry and Isotope Signatures Group Nuclear and Chemical Sciences Division Lawrence Livermore National Laboratory, Livermore, CA 94550.

The radiogenic isotopic compositions of basaltic Martian meteorites (shergottites) and clinopyroxene/olivine cumulate meteorites (nakhlite/chassignites) are used to define the global evolution of Mars. However, the two main groups of meteorites demonstrate that their sources underwent divergent styles of magmatic evolution. The shergottites portray a planet that differentiated ~4.

View Article and Find Full Text PDF

Persistent but weak magnetic field at the Moon's midstage revealed by Chang'e-5 basalt.

Sci Adv

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.

View Article and Find Full Text PDF

Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition.

View Article and Find Full Text PDF

Io experiences tidal deformation due to its eccentric orbit around Jupiter, which provides a primary energy source for Io's ongoing volcanic activity and infrared emission. The amount of tidal energy dissipated within Io is enormous and has been hypothesized to support the large-scale melting of Io's interior and the formation of a global subsurface magma ocean. If Io has a shallow global magma ocean, its tidal deformation would be much larger than in the case of a more rigid, mostly solid interior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!